Question

7a. Express the fundamental frequency of a piano wire fixed at both ends in terms of...

7a. Express the fundamental frequency of a piano wire fixed at both ends in terms of its tension FT, length L, radius r, and the 3D mass density ρ of the wire material.

7b. Given: radius r = 0.375 × 10-3 m, length L = 0.501 m, and ρsteel = 7.86 × 103 kg/m3. What is the tension required for a steel piano string tuned to middle C (f = 261.626 Hz)?

8.One of the harmonic frequencies of tube A with two open ends is 325 Hz.The next-highest harmonic frequency is 390 Hz. (a) What harmonic frequency is next highest after the harmonic frequency 195 Hz? (b) What is the number of this next-highest harmonic?

9. One of the harmonic frequencies of tube B with only one open end is 1080 Hz.The next-highest harmonic frequency is 1320 Hz. (c) What harmonic frequency is next highest after the harmonic frequency 600 Hz? (d) What is the number of this next-highest harmonic?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A piano tuner stretches a steel piano wire with a tension of 932 N. The wire...
A piano tuner stretches a steel piano wire with a tension of 932 N. The wire is 0.400 m long and has a mass of 3.50 g. A What is the frequency of its fundamental mode of vibration? Express your answer in hertz. B What is the number of the highest harmonic that could be heard by a person who is capable of hearing frequencies up to 10000 Hz ?
A steel wire in a piano has a length of 0.5000 m and a mass of...
A steel wire in a piano has a length of 0.5000 m and a mass of 4.200 10-3 kg. To what tension must this wire be stretched so that the fundamental vibration corresponds to middle C (fC = 261.6 Hz on the chromatic musical scale)? -------- Two pieces of steel wire with identical cross sections have lengths of L and 2L. The wires are each fixed at both ends and stretched so that the tension in the longer wire is...
An organ pipe open at both ends is to be designed so that the fundamental frequency...
An organ pipe open at both ends is to be designed so that the fundamental frequency it plays is 220 Hz. a. What length of pipe is needed? b. If one end of the pipe is stopped up, what other note (frequency) can this same pipe play? c. Draw the fundamental frequency for the pipe open at both ends and when it is closed at one end. d. Calculate and draw the next higher harmonic when one end of the...
Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0...
Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0 cm long, if the pipe is open at both ends. Please enter your answer as four numbers, separated with commas. ffund,fov1,fov2,fov3 =   Hz   Find the fundamental frequency and the frequency of the first three overtones of a pipe 90.0 cm long, if the pipe is closed at one end. Please enter your answer as four numbers, separated with commas. ffund,fov1,fov2,fov3 = Hz If the...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
Scenario: A rope of length 2.00 m is fixed at both ends under 200 N of...
Scenario: A rope of length 2.00 m is fixed at both ends under 200 N of tension. We observe the 2nd harmonic of this rope occurs at 54 Hz. Part A: What is the fundamental frequency of this rope in Hz? Part B: What is the mass density of this rope in g/m?
A pipe open at both ends has a fundamental frequency of 3.00 3 102 Hz when...
A pipe open at both ends has a fundamental frequency of 3.00 3 102 Hz when the temperature is 0°C. (a) What is the length of the pipe? (b) What is the fundamental frequency at a temperature of 30.0°C?
A transverse wave propagates in a very long wire of mass per unit length 4*10^-3 kg/m...
A transverse wave propagates in a very long wire of mass per unit length 4*10^-3 kg/m and under tension of 360 N. An observer next to the wire notices 10 wave peaks (or crests) passing her in a time of 2 seconds moving to the left. a) If at t=0 and x=0 the displacement assumes its maximum value of 1mm, what is the explicit equation for the wave? b) Calculate the maximum longitudinal velocity for an infinitesimal segment of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT