Question

A race-car driver is driving her car at a record-breaking speed of 225 km/h. The first...

A race-car driver is driving her car at a record-breaking speed of 225 km/h. The first turn on the course is banked at 15, and the car’s mass is 1450 kg.

find :

a)        Calculate the radius of curvature for this turn.             b)        Calculate the centripetal acceleration of the car.

c)         If the car maintains a circular track around the curve (does not move up or down the bank), what is the magnitude of the force of static friction?

d)        What is the coefficient of static friction necessary to ensure the safety of this turn?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Centripetal Acceleration: A car moving with a constant speed of 80 km/h enters a circular, flat...
Centripetal Acceleration: A car moving with a constant speed of 80 km/h enters a circular, flat curve with a radius of curvature of 0.50 km.  If the friction between the road and the car’s tires can support a centripetal acceleration of 1.20 m/s2, without slipping, does the car navigate the curve safely, or does it fly off the road? Perform calculations to justify your answer. Be sure to perform all the necessary dimensional conversions to mks units.
A car merges onto the freeway on a banked curve. The car maintains a constant velocity...
A car merges onto the freeway on a banked curve. The car maintains a constant velocity 푣 while driving on the curve, which is banked at angle theta and has a radius of curvature R. The car has mass m and the coefficient of static friction between the car’s tires and the road is meu(s). What is the maximum and minimum speed that the car can go around the banked curve without slipping? Hint: The car tends to slip up...
A race car drives at a speed of 20.0m/s around a circular track banked inwards at...
A race car drives at a speed of 20.0m/s around a circular track banked inwards at an angle of 20.0o from the horizontal. The track is icy, so there is no appreciable friction of the tires on the track. Determine the radius of the track. Submit your answer in the following form: • List all the physical forces acting on the object. Which one of them supplies a centripetal component? • Give your numerical answer for the radius of the...
An 800-kg race car can drive around an unbanked turn with coefficient of static friction between...
An 800-kg race car can drive around an unbanked turn with coefficient of static friction between the track and the car's tires of 0.02. The turn has a radius of curvature of 150 m. Air flowing over the car's wing exerts a downward-pointing force of 10 000 N on the car. Calculate the maximum speed without slipping.
You're watching a car race and observe one of the cars going around a banked circular...
You're watching a car race and observe one of the cars going around a banked circular curve. The bank is tilted at about 20 degrees, meaning that the car is tilted sideways by this much while driving around the bank. The curve seems to be a semicircle in shape, and you see the radius of the curvature is about 18.0 m. a. If the car's tangential speed is constant, then why does the car feel acceleration? b. Draw a force...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT