Question

A photoelectric apparatus is set up with Lead as the target. The Work Function of Pb...

A photoelectric apparatus is set up with Lead as the target. The Work Function of Pb is 4.14 eV. A 25 mW laser of various wavelengths shines on the Pb target. For each wavelength below, indicate the maximum kinetic energy of ejected electrons and the current that flows.

wavlength, nm K, eV I, A
329
240
114

   

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
A) You are setting up a photoelectric effect experiment with an unknown metal surface. Which of...
A) You are setting up a photoelectric effect experiment with an unknown metal surface. Which of the following wavelengths of light is most likely to cause electrons to be ejected from the surface? 700 nm they are all equally likely to work 500 nm 300 nm 900 nm B) Suppose you try the experiment with the light you chose in the previous question, and you get ejected electrons with a maximum kinetic energy of 2.5 eV. What will happen if...
The photoelectric work function of potassium is 2.1 eV. If light that has a wavelength of...
The photoelectric work function of potassium is 2.1 eV. If light that has a wavelength of 180 nm falls on potassium Part A: Find the stopping potential for light of this wavelength (V = ______ units) Part B: Find the kinetic energy, in electron volts, of the most energetic electrons ejected (K = ______ eV) Part C: Find the speeds of these electrons (vmax = ______ units)
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
The work function for copper is 4.5 eV. (a) Find the threshold frequency and wavelength for...
The work function for copper is 4.5 eV. (a) Find the threshold frequency and wavelength for the photoelectric effect to occur when monochromatic electromagnetic radiation is incident on the surface of a sample of copper. Hz nm (b) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 190 nm. eV (c) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 240 nm. eV
Light of wavelength 420 ?? strikes a cesium target with work function 2.1 ?? in a...
Light of wavelength 420 ?? strikes a cesium target with work function 2.1 ?? in a photoelectric experiment. Do we expect electrons to be ejected from the target? If yes, what is the maximum kinetic energy of the ejected electrons? If no, what energy is missing in order to free electrons?
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in a photoelectric experiment is observed to be 0.850 V. a) What is the work function φ of the metal? (eV) b) What is the maximum kinetic energy of the ejected electrons (in Joules)? c) What is the longest wavelength light that will still allow electrons to escape the metal?(nm)
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency...
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency of light that will cause photoelectron emission from this surface ? answer in the format of a.bc x 10de Hz b) A photoelectric cell is illuminated with white light (wavelengths from 400 nm to 700 nm). What is the maximum kinetic energy (in eV) of the electrons emitted by this surface if its work function is 2.30 eV ? 4 digit answer
The work function for gold is 5.01 eV. (a) Find the threshold frequency and wavelength for...
The work function for gold is 5.01 eV. (a) Find the threshold frequency and wavelength for the photoelectric effect to occur when monochromatic electromagnetic radiation is incident on the surface of a sample of gold. In Hz and nm (b) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 160 nm.in eV ( c) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 220 nm. In...
The work function for aluminum is 4.2 eV. (a) What is the cutoff frequency of light...
The work function for aluminum is 4.2 eV. (a) What is the cutoff frequency of light incident on an aluminum target that releases photoelectrons from its surface? (b) Find the corresponding cutoff wavelength. (c) If photons of energy 5.5 eV are incident on an aluminum target what is the maximum kinetic energy of the ejected photoelectrons? (d) what is the maximum velocity of a photoelectron traveling from the anode to the cathode of a photocell? (d) If a red laser...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT