Question

Two converging lenses having focal lengths of f1 = 11.4 cm and f2 = 20.0 cm...

Two converging lenses having focal lengths of f1 = 11.4 cm and f2 = 20.0 cm are placed d = 50.0 cm apart, as shown in the figure below. The final image is to be located between the lenses, at the position x = 32.7 cm indicated. On the left, an arrow originating from a long horizontal line points upward and is labeled "Object." A vertical, convex lens, labeled "f1," is centered upon the horizontal line and is positioned a distance p to the right of the Object arrow. A second vertical, convex lens, labeled "f2," is positioned a distance d to the right of the left lens, and is also centered upon the horizontal line. A second arrow, labeled "Final image," lies between the two lenses at a distance x from the left lens, originates from the horizontal line, and points downward. (a) How far (in cm) to the left of the first lens should the object be positioned? Your response differs from the correct answer by more than 10%. Double check your calculations. cm (b) What is the overall magnification of the system?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two converging lenses having focal lengths of f1 = 11 cm and f2 = 19 cm...
Two converging lenses having focal lengths of f1 = 11 cm and f2 = 19 cm are placed 50 cm apart as shown in Figure. The final inverted image is to be located between the lenses at the position 38 cm to the right of the first lens. How far (in cm) to the left of the first lens should the object be positioned? Express the answer (numerical value only) with one decimal place.
Two converging lenses, the first with focal length f1 = 25 cm and the second with...
Two converging lenses, the first with focal length f1 = 25 cm and the second with focal length f2 = 15 cm are separated by a distance of ` = 65 cm. An object is place at a distance of do1 = 45 cm to the left of the first lens. (a) What will be the distance from the second lens that the final image is produced? Is this image to the left or right of the second lens? Justify...
Part 1 Two thin converging lenses of focal lengths f1 = 9.6 cm and f2 =...
Part 1 Two thin converging lenses of focal lengths f1 = 9.6 cm and f2 = 12 cm are separated by a = 20 cm, as in the figure below. An object is placed p1 = 15 cm to the left of the first lens. Find the position of the final image from the second lens. Answer in units of cm. Part 2 What is the magnification of the second lens? Part 3 Calculate the magnification of the whole system.
Two convex lenses (f1=20 cm and f2=30 cm) and a convex mirror (R=80 cm) are placed...
Two convex lenses (f1=20 cm and f2=30 cm) and a convex mirror (R=80 cm) are placed 1m apart from each other and an object is placed 30 cm in front of the first convex lens (f1=20 cm). Find the distance between the object and final image and its total magnification.
An object 5.2 mm high is on the optical axis of two lenses with focal lengths...
An object 5.2 mm high is on the optical axis of two lenses with focal lengths f1 = +5.0 cm, f2 = +10 cm. The object is 6.3 cm to the left of the first lens, and the second lens is 32 cm to the right of the first lens. Find the position (relative to the second lens) and the size of the final image by calculation. position ? size ? Find the position (relative to the second lens) and...
Two converging lenses with the focal lengths f 1 = 0.2 m and f2 = 0.4...
Two converging lenses with the focal lengths f 1 = 0.2 m and f2 = 0.4 m are positioned at a distance f1 + f2 to each other. Such arrangements are called "beam expanders" and are often used in laser technology a) What is the expansion ratio W2 / W1? One of the two converging lenses is now to be replaced by a diverging lens, with the same expansion ratio W2 / W1 to be achieved. b) Which of the...
1. If you have the focal length of the first and second lenses f1 = 150...
1. If you have the focal length of the first and second lenses f1 = 150 mm and f2 = 75 mm respectively, object distance from the first lens d0 = 280 mm and distance between lenses d = 440 mm, calculate the image distance after the second lens and image magnification of the two-lens system. In order to calculate magnification, use the object height value of 10 mm f1 = 150 mm f2 = 75 mm Object distance from...
A converging lens of focal length f1 = +22.5 cm is placed at a distance d...
A converging lens of focal length f1 = +22.5 cm is placed at a distance d = 60.0 cm to the left of a diverging lens of focal length f2 = −30.0 cm. An object is placed on the common optical axis of the two lenses with its base 45.0 cm to the left of the converging lens. (The thin-lens approximation may be assumed to hold.) (a) Calculate the location of the final image and its overall magnification with respect...
Two lenses are mounted d = 38 cm apart on an optical bench. The focal length...
Two lenses are mounted d = 38 cm apart on an optical bench. The focal length of the first lens is f1 = 7.3 cm and that of the second lens is f2 = 4.8 cm. An object of height ho = 3.1 cm is placed at a distance of do = 23 cm in front of the first lens. a.)Ignoring the second lens for now, at what distance, in centimeters, behind the first lens is the object’s image formed...
The focal lengths of the converging and diverging lenses are +15 and -20 cm, respectively. The...
The focal lengths of the converging and diverging lenses are +15 and -20 cm, respectively. The distance between them is 50 cm and the object is placed 10 cm to the left of the converging lens. Determine the location of the final image with respect to the diverging lens. Is this image real or virtual? Find the total magnification; is the image inverse or upright?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT