Question

Mass #1 of 5.0 kg is moving at 2.0 m/s in the + x-direction, and collides...

Mass #1 of 5.0 kg is moving at 2.0 m/s in the + x-direction, and collides with mass #2 of 10. kg that is initially at rest, on a frictionless horizontal surface. They collide elastically. Find each velocity, after the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of is initially moving in the 2.5 m/s in the +x direction and collides...
A mass of is initially moving in the 2.5 m/s in the +x direction and collides in a perfectly elastically with a mass of moving in the -x direction at 7.6 m/s. After the collision, the mass that was moving in the +x direction originally is moving in the -x direction at 8.6 m/s. What is the velocity of the other mass after collision in m/s? Indicate -x direction, by including a negative sign.
A 200-g particle moving at 5.0 m/s on a frictionless horizontal surface collides with a 300-g...
A 200-g particle moving at 5.0 m/s on a frictionless horizontal surface collides with a 300-g particle initially at rest. After the collision the 300-g object has a velocity of 2.0 m/s at 45o below the direction of motion of the incoming particle. What is the velocity of the incoming particle after the collision? What percentage of the initial kinetic energy is lost in the collision?
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with...
A 5.0 kg toy-car moving with a speed of 10.0 m/s in +x direction collides with a 7.0 kg toy truck moving with a velocity of 15.0 m/s in a direction 37 degrees above +x direction. What is the velocity, both the magnitude and direction, of the two objects after the collision, if they remain stuck together?
A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s collides...
A ball of mass 0.310 kg that is moving with a speed of 5.7 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . 1. Calculate the velocity of the target ball after the collision. 2. Calculate the mass of the target ball.
A mass of 3 kg is initially moving in the +x direction and collides inelastically with...
A mass of 3 kg is initially moving in the +x direction and collides inelastically with a mass of 10 kg moving in the -x direction at 2 m/s. After the collision, both masses move in the +x direction at 4 m/s. How much kinetic energy is lost in the collision in Joules? Answer is positive
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides...
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . Calculate the velocity of the target ball after the collision. Calculate the mass of the target ball.
A mass is moving at 7 m/s in the +x direction and it collides in a...
A mass is moving at 7 m/s in the +x direction and it collides in a perfectly elastic collision with a mass of 2 kg moving in the -x direction. The collision takes places in 0.19 seconds and after the collision the mass that was moving in the +x direction is moving in the -x direction at 9 m/s and the mass that was moving in the -x direction is moving in the +x direction at 15 m/s. What is...
A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s collides...
A ball of mass 0.265 kg that is moving with a speed of 5.1 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.5 m/s . Part A: Calculate the velocity of the target ball after the collision. Part B: Calculate the mass of the target ball.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT