Question

A 4.80-kg ball, moving to the right at a velocity of +1.70 m/s on a frictionless table, collides head-on with a stationary 7.75-kg ball. Find the final velocities of the balls if the collision meet the following conditions.

(a) elastic

4.8-kg ball | =_________ m/s |

7.75-kg ball | =_________ m/s |

(b) completely inelastic _________m/s

Answer #1

b) completely inelastic collision

momentum conservation

=> 4.80*1.7 + 0 = (4.8 + 7.75)*v

=> v = 0.650 m/s

a) elastic collision

momentum conservation

4.80*1.7 + 0 = 4.80*v1 + 7.75*v2 .....eq1

energy conservation

0.5*4.80*(1.7)^2 + 0 = 0.5*4.80*v1^2 + 0.5*7.75*(v2)^2

=> 13.87 = 4.80*v1^2 + 7.75*(v2)^2

put value of v1 from eq1

=> 13.87 = 4.80*[(8.16 - 7.75*v2)/4.8]^2 + 7.75*(v2)^2

=> this quadratic equation , we can find value of v2 and then v1 also.

A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s
on a frictionless table, collides head-on with a stationary 8.20-kg
ball. Find the final velocities of (a) the 4.80-kg
ball and of (b) the 8.20-kg ball if the collision
is elastic. (c)Find the magnitude and direction of
the final velocity of the two balls if the collision is completely
inelastic.

A 4.80-kg ball, moving to the right at a velocity of +3.36 m/s
on a frictionless table, collides head-on with a stationary 6.10-kg
ball. Find the final velocities of (a) the 4.80-kg ball and of (b)
the 6.10-kg ball if the collision is elastic. (c) Find the
magnitude and direction of the final velocity of the two balls if
the collision is completely inelastic. (a) Number Units

A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s
on a frictionless table, collides head-on with a stationary 8.10-kg
ball. Find the final velocities of (a) the 1.70-kg
ball and of (b) the 8.10-kg ball if the collision
is elastic. (c) Find the magnitude and direction
of the final velocity of the two balls if the collision is
completely inelastic.

A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s
on a frictionless table, collides head-on with a stationary 6.90-kg
ball. Find the final velocities of (a) the 1.10-kg
ball and of (b) the 6.90-kg ball if the collision
is elastic. (c) Find the magnitude and direction
of the final velocity of the two balls if the collision is
completely inelastic.

A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s
on a frictionless table, collides head-on with a stationary 6.70-kg
ball. Find the final velocities of (a) the 1.40-kg ball and of (b)
the 6.70-kg ball if the collision is elastic. (c) Find the
magnitude and direction of the final velocity of the two balls if
the collision is completely inelastic.

A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s
on a frictionless table, collides head-on with a stationary 8.50-kg
ball. Find the final velocities of (a) the 4.30-kg
ball and of (b) the 8.50-kg ball if the collision
is elastic. (c) Find the magnitude and direction
of the final velocity of the two balls if the collision is
completely inelastic.

A 1.00-kg ball, moving to the right at a velocity of +1.35 m/s
on a frictionless table, collides head-on with a stationary 8.00-kg
ball. Find the final velocities of (a) the 1.00-kg ball and of (b)
the 8.00-kg ball if the collision is elastic. (c) Find the
magnitude and direction of the final velocity of the two balls if
the collision is completely inelastic.

A ball of mass 2 kg is moving with a velocity of 12 m/s collides
with a stationary ball of mass 6 kg and comes to rest. calculate
the velocity of the 6 kg ball after the collision. (both balls are
elastic)

A ball with mass M = 5 kg is moving with speed V=10 m/s and
collides with another ball with mass m = 2.5 kg which is initially
stationary. There is no other force such as gravity acting on the
two balls. After the collision, both balls move at angle θ=30
degrees relative to initial direction of motion of the ball with
mass M = 5 kg. a) What are the speeds of the two balls after the
collision? b)...

a
1.2 kg ball moving with a velocity of 8.0m/s collides head on with
a stationary ball and bounces back at a velocity or 4.0 m/s. If the
collision is perfectly elastic, calculate (a) the mass of the other
ball (b) the velocity of the other ball after the collision (c) the
momentum of each ball before and after the collision (d) the
kinetic energy of each ball before and after the collision

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 32 minutes ago

asked 40 minutes ago

asked 42 minutes ago

asked 44 minutes ago

asked 58 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago