Question

The pulley shown below has a mass of 3.00 kg and radius R = 60.0 cm,...

The pulley shown below has a mass of 3.00 kg and radius R = 60.0 cm, and can be treated as a uniform solid disk that can rotate about its center. The block (which has a mass of m = 900 g) hanging from the string wrapped around the pulley is then released from rest. Use g = 10 m/s2. When the block has dropped through a distance of 2.00 m, what is the block's speed?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10 kg pulley with radius 1.0 m has an angular acceleration of 4.0 rad/s2 due...
A 10 kg pulley with radius 1.0 m has an angular acceleration of 4.0 rad/s2 due to a wooden block hanging from a rope wound around the pulley. What is the mass of the block (in kg)? Consider the pulley to be a uniform disk.
A block (mass = 59.1 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 59.1 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1/2MR2 kg · m2, where M = 6.9 kg is the mass of the pulley and R=1.3 m is its radius ), as the drawing shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley...
Two blocks hang from either end of a massless rope that runs over a pulley, treated...
Two blocks hang from either end of a massless rope that runs over a pulley, treated as a thin solid disk, (An Atwood's Machine), and are held in place. One block has a mass of 12.0 kg, the pulley has a mass of 2.00 kg and radius 5.00 cm, and the other block's mass is unknown. The blocks are released from rest, and after an unspecified period of time, the block of known mass has descended 2.50 m and has...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm rests with its flat surface on a frictionless table (i.e., the axis of the cylinder is perpendicular to the table.) The diagram shows a top view. A string is wrapped around the rim of the disk and a constant force of F = 10.8 N is applied to the string. The string does not slip on the rim. 1) What is the acceleration of...
A 1.53kg bucket hangs on a rope wrapped around a pulley of mass 7.07kg and radius...
A 1.53kg bucket hangs on a rope wrapped around a pulley of mass 7.07kg and radius 66cm. This pulley is frictionless in its axle, and has the shape of a solid uniform disk. A. Explain conceptually why the moment of inertia of this pulley is less than the moment of inertia of a hoop around its center with the same mass and circumference as the pulley. B. What is the angular acceleration of the pulley? C. What is the acceleration...
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.0 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.2 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.1 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.7 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 1.7 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.7 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.0 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT