Question

Consider the following three objects, each of the same mass and radius: 1) Solid Sphere 2)...

Consider the following three objects, each of the same mass and radius:

1) Solid Sphere

2) Solid Disk

3) Hoop.

All three are release from rest at top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. use work-kinetic energy theorem to determine which object will reach the bottom of the incline first

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R= 0.5 m) are placed at the top of an incline at height (h= 10.0 m). The objects are released from rest and rolls down without slipping. a) The solid disk reaches to the bottom of the inclined plane before the hoop. explain why? b) Calculate the rotational inertia (moment of inertia) for the hoop. c) Calculate the rotational inertia (moment of inertia) for the...
Three small objects, a cube, a solid sphere, and a solid cylinder, are released simultaneously from...
Three small objects, a cube, a solid sphere, and a solid cylinder, are released simultaneously from the top of three inclines planes with inclination angles of 15°, 30°, and 60° respectively. The horizontal distances between the top and bottom of the inclines are the same. Assume that the cube slides down without friction while the sphere and cylinder roll down without slipping. Rank the order in which the objects reach the bottom of the inclined planes from first to last?...
Four objects with the same mass and radius roll without slipping down an incline. If they...
Four objects with the same mass and radius roll without slipping down an incline. If they all start at the same location, which object will take the longest time to reach the bottom of the incline? Mass Moment of Inertia Table Choices A. A hollow sphere B. A solid sphere C. A thin-wall hollow cylinder D. They all take the same time E. A solid cylinder
The following four objects (each of mass m) roll without slipping down a ramp of height...
The following four objects (each of mass m) roll without slipping down a ramp of height h: Object 1: solid cylinder of radius r Object 2: solid cylinder of radius 2r Object 3: hoop of radius r Object 4: solid sphere of radius 2r Rank these four objects on the basis of their rotational kinetic energy at the bottom of the ramp.
If a solid sphere (radius 11.0 cm) and a solid cylinder (radius 10.0 cm) of equal...
If a solid sphere (radius 11.0 cm) and a solid cylinder (radius 10.0 cm) of equal mass are released simultaneously and roll without slipping down an inclined plane. A)The sphere reaches the bottom first. B) The cylinder reaches the bottom first. C) They reach the bottom together.
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 25.0 ∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v 2 at the bottom of the ramp.
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely...
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 22.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2=__________ m/s
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely...
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely translational speed of 2.50 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 28.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2= m/s
A hollow sphere and a solid sphere each have the same mass and radius. They are...
A hollow sphere and a solid sphere each have the same mass and radius. They are released simultaneously from rest and allowed to roll without slipping down a ramp. Which one reaches the bottom first? Group of answer choices the solid sphere You can't determine which is first unless you know the mass. You can't determine which is first unless you know the radius. They reach the bottom at the same time. the hollow sphere
A hollow sphere and a solid sphere each have the same mass and radius. They are...
A hollow sphere and a solid sphere each have the same mass and radius. They are released simultaneously from rest and allowed to roll without slipping down a ramp. Which one reaches the bottom first? Group of answer choices You can't determine which is first unless you know the radius.. You can't determine which is first unless you know the mass. They reach the bottom at the same time. the hollow sphere the solid sphere
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT