Question

If a car takes a banked curve at less than the ideal speed, friction is needed...

If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads).

(a) Calculate the ideal speed to take a 125-m radius curve banked at 14.0°.

Did you draw a free body diagram and label all forces acting on a vehicle? km/h

(b) What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 25.0 km/h?

Identify the force that supplies the centripetal force needed to keep a vehicle in this circular path.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If a car takes a banked curve at less than the ideal speed, friction is needed...
If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads). (a) Calculate the ideal speed to take a 105 m radius curve banked at 15°. Correct: Your answer is correct. m/s (b) What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 30.0 km/h?
Highway curves are often banked to reduce a vehicle’s reliance on friction when negotiating the turn:...
Highway curves are often banked to reduce a vehicle’s reliance on friction when negotiating the turn: On a banked curve, there is a centripetal component of normal force acting on the vehicle.When the angle and speed are such that friction plays no role in a vehicle’s motion in the curve, the nature of the road surface is immaterial and thus the posted speed limit applies in both wet and dry weather. Suppose the posted speed limit is 100 km/h on...
A race car drives at a speed of 20.0m/s around a circular track banked inwards at...
A race car drives at a speed of 20.0m/s around a circular track banked inwards at an angle of 20.0o from the horizontal. The track is icy, so there is no appreciable friction of the tires on the track. Determine the radius of the track. Submit your answer in the following form: • List all the physical forces acting on the object. Which one of them supplies a centripetal component? • Give your numerical answer for the radius of the...
A race-car driver is driving her car at a record-breaking speed of 225 km/h. The first...
A race-car driver is driving her car at a record-breaking speed of 225 km/h. The first turn on the course is banked at 15, and the car’s mass is 1450 kg. find : a)        Calculate the radius of curvature for this turn.             b)        Calculate the centripetal acceleration of the car. c)         If the car maintains a circular track around the curve (does not move up or down the bank), what is the magnitude of the force of static friction?...
A curve of radius 20 m is banked so that a 1100 kg car traveling at...
A curve of radius 20 m is banked so that a 1100 kg car traveling at 30 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.3. Answer in units of m/s.
A curve of radius 70 m is banked for a design speed of 100 km/h .If...
A curve of radius 70 m is banked for a design speed of 100 km/h .If the coefficient of static friction is 0.39 (wet pavement), at what range of speeds can a car safely make the curve? [Hint: Consider the direction of the friction force when the car goes too slow or too fast.]
A curve of radius 70 mm is banked for a design speed of 85 km/h ....
A curve of radius 70 mm is banked for a design speed of 85 km/h . If the coefficient of static friction is 0.40 (wet pavement), at what range of speeds can a car safely make the curve? [Hint: Consider the direction of the friction force when the car goes too slow or too fast.] Express your answers using two significant figures separated by a comma. vmin, vmax = ????? km/h
A curve of radius 20 m is banked so that a 1000 kg car traveling at...
A curve of radius 20 m is banked so that a 1000 kg car traveling at 60 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . ? Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.2. Answer in units of...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
What tools could AA leaders have used to increase their awareness of internal and external issues?...
What tools could AA leaders have used to increase their awareness of internal and external issues? ???ALASKA AIRLINES: NAVIGATING CHANGE In the autumn of 2007, Alaska Airlines executives adjourned at the end of a long and stressful day in the midst of a multi-day strategic planning session. Most headed outside to relax, unwind and enjoy a bonfire on the shore of Semiahmoo Spit, outside the meeting venue in Blaine, a seaport town in northwest Washington state. Meanwhile, several members of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT