Question

Bookmark The electric field of an electromagnetic wave in a vacuum is Ey= (24V/m)sin((5.28 x 108)x-ωt),...

Bookmark

The electric field of an electromagnetic wave in a vacuum is Ey= (24V/m)sin((5.28 x 108)x-ωt), where x is in m and t is in s.

Part A
What is the wave's wavelength?
Express your answer using three significant figures.
λ =__________nm

Part B
What is the wave's frequency?
Express your answer using three significant figures.
f = __________Hz

Part C
What is the wave's magnetic field amplitude?
Express your answer using two significant figures.
B = __________T

Homework Answers

Answer #1

here

k= wave number

A)

-------------------------------------

we know velocity of light = c= 3*108m/sec

------------------------------------------------------------

c)

we know

given

amplitude of E=24V/m

in two significant figure

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.6μT)sin((8.50×106)x−ωt)=(2.6μT)sin((8.50×106)x−ωt), where xx is...
The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.6μT)sin((8.50×106)x−ωt)=(2.6μT)sin((8.50×106)x−ωt), where xx is in mm and t is in s. What is the wave's wavelength? What is the wave's frequency? What is the wave's electric field amplitude?
The electric field of an electromagnetic wave in a vacuum is Ey=(18.0 V/m)cos((4.18 ×10^8)x−ωt), where x...
The electric field of an electromagnetic wave in a vacuum is Ey=(18.0 V/m)cos((4.18 ×10^8)x−ωt), where x is in m and t is in s. What is the wavelength, frequency, and magnetic field amplitude of the wave?
In SI units, the electric field in an electromagnetic wave is described by Ey = 118...
In SI units, the electric field in an electromagnetic wave is described by Ey = 118 sin(1.40 107x − ωt). (a) Find the amplitude of the corresponding magnetic field oscillations.________ µT (b) Find the wavelength λ. ___________µm (c) Find the frequency f. __________Hz
The magnetic field of an electromagnetic wave in a vacuum is Bz =(3.8μT)sin((1.15×10^7)x−ωt), where x is...
The magnetic field of an electromagnetic wave in a vacuum is Bz =(3.8μT)sin((1.15×10^7)x−ωt), where x is in m and t is in s What is the wavelength, frequency, and electric field amplitude of the wave?
An electromagnetic wave in vacuum has an electric field amplitude of 321 V/m. Calculate the amplitude...
An electromagnetic wave in vacuum has an electric field amplitude of 321 V/m. Calculate the amplitude of the corresponding magnetic field. _________nT
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (4.5 V/m) cos[(π × 1015 s-1)(t - x/c)].(a) What is the amplitude of the magnetic field component?
Consider an electromagnetic wave travelling in vacuum, where the electric field is given by: ?⃗ (?...
Consider an electromagnetic wave travelling in vacuum, where the electric field is given by: ?⃗ (? ,?)=40(?/?) sin[(8×106 ???/?) (?+??)+1.57 ???]?̂ a) Compute the: i. frequency ii. wavelength iii. period iv. amplitude v. phase velocity vi. direction of motion b) Write the corresponding expression for the magnetic field of this travelling wave (don’t forget to include the proper units). c) Plot this waveform as a function of x at t=0.
The electric component of a beam of polarized light is Ey = (5.27 V/m) sin[(1.03 ×...
The electric component of a beam of polarized light is Ey = (5.27 V/m) sin[(1.03 × 106 m-1)z + ωt]. (a) Write an expression for the magnetic field component of the wave, including a value for ω. What are the (b)wavelength, (c) period, and (d) intensity of this light? (e) Parallel to which axis does the magnetic field oscillate? (f)In which region of the electromagnetic spectrum is this wave?
The electric component of a beam of polarized light is Ey = (5.31 V/m) sin[(1.29 ×...
The electric component of a beam of polarized light is Ey = (5.31 V/m) sin[(1.29 × 106 m-1)z + ωt]. (a) Write an expression for the magnetic field component of the wave, including a value for ω. What are the (b) wavelength, (c) period, and (d) intensity of this light? (e) Parallel to which axis does the magnetic field oscillate? (f) In which region of the electromagnetic spectrum is this wave?
An electromagnetic wave is given in SI units by E(x, t) = 3.95 sin(0.46x − ωt)...
An electromagnetic wave is given in SI units by E(x, t) = 3.95 sin(0.46x − ωt) V/m. (Use the exact values you enter to make later calculations.) (a) What is the angular frequency? rad/s (b) What is the magnetic field at x = 2.0 m and t = 3.0 s? T