Question

1) The position of a particle is given in cm by x = (4) cos 3πt,...

1) The position of a particle is given in cm by x = (4) cos 3πt, where t is in seconds.

(a) Find the maximum speed.
   m/s

(b) Find the maximum acceleration of the particle.
m/s2

2) An object of mass m is suspended from a vertical spring of force constant 1692 N/m. When the object is pulled down 2.51 cm from equilibrium and released from rest, the object oscillates at 5.10 Hz. Write expressions for the acceleration ax as functions of time t.

ax(t) = m/s2

Homework Answers

Answer #1

If you have any doubt then mention in the commant.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position of a particle is given in cm by x = (2) cos 6πt, where...
The position of a particle is given in cm by x = (2) cos 6πt, where t is in seconds. (a) Find the maximum speed. m/s (b) Find the maximum acceleration of the particle. m/s2 (c) What is the first time that the particle is at x = 0 and moving in the +x direction? s
The position of a particle is given in cm by x = (9) cos 5πt, where...
The position of a particle is given in cm by x = (9) cos 5πt, where t is in seconds. (a) Find the maximum speed. .... m/s (b) Find the maximum acceleration of the particle. .... m/s2 (c) What is the first time that the particle is at x = 0 and moving in the +x direction? ..... s
The position of a particle is given in cm by x = (2) cos 9?t, where...
The position of a particle is given in cm by x = (2) cos 9?t, where t is in seconds. (a) Find the maximum speed. 0.565 m/s (b) Find the maximum acceleration of the particle. _______m/s2 (c) What is the first time that the particle is at x = 0 and moving in the +x direction? _______s
The position of a particle in cm is given by x = (9) cos 3πt, where...
The position of a particle in cm is given by x = (9) cos 3πt, where t is in seconds. (a) What is the frequency? Hz (b) What is the period? s (c) What is the amplitude of the particle's motion? cm (d) What is the first time after t = 0 that the particle is at its equilibrium position? s In what direction is it moving at that time? * in the positive direction * in the negative direction    
PROBLEM 1 The position of a particle on the x axis is given by: x =...
PROBLEM 1 The position of a particle on the x axis is given by: x = 5.00 – 8.00 t + 2.00 t 2 with t in seconds and x in meters. a) Calculate the value of x the moment the particle momentarily stops. b) When t = 0.500 s, is the particle speeding up or slowing down? Explain. PROBLEM 2 A ball is kicked at an angle θ0 with the horizontal with an initial speed of 20.0 m /...
A particle of mass m is initially at x = 28 cm with a period of...
A particle of mass m is initially at x = 28 cm with a period of 1.3 s and moving with velocity v0 = +52 cm/s. Write expressions for the following. (Round numerical values in your answers to two decimal places.) (a) the position x as a function of t x(t) = _____ m (b) the velocity vx as a function of t vx(t) = _____ m/s (c) the acceleration ax as a function of t ax(t) = _____ m/s2
If the object-spring system is described by x = (0.340 m) cos (1.55t), find the following....
If the object-spring system is described by x = (0.340 m) cos (1.55t), find the following. (a) the amplitude, the angular frequency, the frequency, and the period A = m ω = rad/s f = Hz T = s (b) the maximum magnitudes of the velocity and the acceleration vmax = m/s amax = m/s2 (c) the position, velocity, and acceleration when t = 0.250 s x = m v = m/s a = m/s2
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
If the object-spring system is described by x = (0.310 m) cos (1.55t), find the following....
If the object-spring system is described by x = (0.310 m) cos (1.55t), find the following. (a) the amplitude, the angular frequency, the frequency, and the period A = m ω = The angular frequency is ω in Acosωt. rad/s f = Hz T = s (b) the maximum magnitudes of the velocity and the acceleration vmax = m/s amax = m/s2 (c) the position, velocity, and acceleration when t = 0.250 s x = m v = m/s a...
A mass is suspended on a spring, pulled downward from its equilibrium position, and released. Assume...
A mass is suspended on a spring, pulled downward from its equilibrium position, and released. Assume that t = 0 when the spring is released, and the frequency of oscillation is w. Assume a vertical coordinate system in which the coordinate y points upward (see diagram at left). Match the following physical quantities with their functional form. Vertical Acceleration d^2y/dt^2 Vertical Velocity dy/dt Vertical position y Total Energy    A. cos wt B. -sin wt C. Constant D. sin wt...