Question

Take the rod and ball to be initially at rest. The center of mass of the...

Take the rod and ball to be initially at rest. The center of mass of the rod is 4.56 m above the level of the ball. The rod has a mass of 9.07 kg and length of 6.45 m. The ball is 2.58 kg. Now, the rod is left to swing and collide with the ball and they stick together. What is the final angular velocity of the ball+rod system after the collision?

Homework Answers

Answer #1

Above question is from collision topic. It will solve by applying a angular momentum conservation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball with a mass of 2 kg is initially moving to the right with a...
A ball with a mass of 2 kg is initially moving to the right with a speed of 3 m/s. It collides with a 5 kg ball moving to the left with a speed of 1 m/s. The balls collide partially elastically: 70% of the initial kinetic energy of the system is conserved in the collision. Find the final velocity of each ball. The balls move only along the x-axis. Show your work.
A ball of mass 2 kg is traveling towards you at 15 m/s. You are at...
A ball of mass 2 kg is traveling towards you at 15 m/s. You are at rest and have a mass of 75 kg. Assuming you catch the ball, what is your final velocity? Assuming the ball bounces off you and travels in the opposite direction with a velocity of 12 m/s, what is your velocity? A car of 1200 kg travels east at 24 m/s while a truck of 2200 kg travels north at 19 m/s. They collide and...
2 air carts collide and stick together. cart one is M1 = 0.755 kg and initial...
2 air carts collide and stick together. cart one is M1 = 0.755 kg and initial speed of 0.435 m/s the cart to right is initially at rest with mass m2= 0.300kg. a.find the velocity of the center of mass before the carts Collide and stick together b. find the velocity of the center of mass after the carts Collide and stick together c. find the kinetic energy of the system before and after the Collision
A cue ball (mass = 0.170 kg) is at rest on a frictionless pool table. The...
A cue ball (mass = 0.170 kg) is at rest on a frictionless pool table. The ball is hit dead center by a pool stick, which applies an impulse of +1.20 N · s to the ball. The ball then slides along the table and makes an elastic head-on collision with a second ball of equal mass that is initially at rest. Find the velocity of the second ball just after it is struck. ? m/s
A cue ball (mass = 0.140 kg) is at rest on a frictionless pool table. The...
A cue ball (mass = 0.140 kg) is at rest on a frictionless pool table. The ball is hit dead center by a pool stick, which applies an impulse of +1.40 N · s to the ball. The ball then slides along the table and makes an elastic head-on collision with a second ball of equal mass that is initially at rest. Find the velocity of the second ball just after it is struck. m/s
A ball with a mass of 0.615 kg is initially at rest. It is struck by...
A ball with a mass of 0.615 kg is initially at rest. It is struck by a second ball having a mass of 0.405 kg , initially moving with a velocity of 0.275 m/s toward the right along the x axis. After the collision, the 0.405 kg ball has a velocity of 0.215 m/s at an angle of 36.9 ? above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. What is the magnitude...
A ball with a mass of 0.590 kg is initially at rest. It is struck by...
A ball with a mass of 0.590 kg is initially at rest. It is struck by a second ball having a mass of 0.390 kg , initially moving with a velocity of 0.275 m/s toward the right along the x axis. After the collision, the 0.390 kg ball has a velocity of 0.185 m/s at an angle of 37.8 ∘ above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. What is the magnitude...
A ball with a mass of 1.1 kg is initially at rest. It is struck by...
A ball with a mass of 1.1 kg is initially at rest. It is struck by a second ball having a mass of 1.3 kg, initially moving with a velocity of 3.5 m/s toward the right along the x axis. After the collision, the 1.3 kg ball has a velocity of 2.7 m/s at an angle of 35? above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. Do not assume that the collision...
(8 pts) A point mass of mass mp is initially at rest on a frictionless surface....
(8 pts) A point mass of mass mp is initially at rest on a frictionless surface. Someone who is bored while social distancing is making a Rube Goldberg machine for a Tik Tok video. As part of this, a long stick will swing downwards and strike the point mass, causing the stick to come to completely to rest and the point mass to be launched with a horizontal velocity vf . The rod has a total length 2.0 m is...
One object is at rest, and another is moving. The two collide in a one-dimensional, completely...
One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 30 m/s. The masses of the two objects are 3.0 and 7.6 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is...