Question

A. Calculate the magnitude and direction of the electric field point at Z in the diagram...

A. Calculate the magnitude and direction of the electric field point at Z in the diagram below

q1=2.0*10^-5C. q2=8.0*10^-6C

- <-----60cm------------> + <------30cm----->

X. Y Z

B. A small test charge of +1.0 uC experiences an electric force of 6.0810^-6 N to the right.

1. Determine the electric field strength at that point.

2. Calculate the force that would be exerted on a charge of -7.2*10^-4 C located at the same point, in place of the   test charge

C. A charge of 1.2*10^-3C is fixed at each corner of a rectangle that is 30cm wide and 40 cm long. Determine the electric field and the electric potential at the center.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 13 µC charge is located in a 288 N/C electric field. What is the force...
A 13 µC charge is located in a 288 N/C electric field. What is the force the charge experiences? (Hint: 1 µC = 10−6C ). Calculate to 4 decimals.
Please show the steps 1) What is the magnitude of the electric field a distance 1.5...
Please show the steps 1) What is the magnitude of the electric field a distance 1.5 mm from an electron? E=? 2) Three point charges are placed on the x-axis as follows: 22 μC at x=0; 30 μC at x=0.60m; and -10 μC at x=1.2m. A) Find the net force on the 22 μC point charge. Assume the direction of the x-axis as positive. Express your answer to two significant figures and include the appropriate units. F1=? B) Find the...
A point charge q is moving in uniform electric field (E0 in the z-direction) and uniform...
A point charge q is moving in uniform electric field (E0 in the z-direction) and uniform magnetic field (B0 field in the x-direction). (i) What is the force acting on the charge particle? Find equations of motion for the charge particle. (ii) Assume that initially the charge is placed the origin and has initial velocity (E0/2B0) in the y-direction. Determine position and velocity of the charge particle as a function of time. (iii) Find the trajectory of the particle and...
A point charge Q1= +5uC is located on the x axis at x = 5.0 cm,...
A point charge Q1= +5uC is located on the x axis at x = 5.0 cm, and a second point charge Q2= - 7 uC is located on the x axis at x = -8.0 cm. 1- Calculate the electric field at the origin due to Q1 and Q2? (give answer in unit vector notations). 2- Calculate the electric field on the y-axis at point y=+6.0 cm due to Q1 and Q2? (give answer in unit vector notations). 3- What...
Calculate the magnitude of the electric field at one corner of a square 1.52 mm on...
Calculate the magnitude of the electric field at one corner of a square 1.52 mm on a side if the other three corners are occupied by 4.25×10−6 CC charges. What is the direction of the electric field at the corner? along the side of the square between the corner and one of the charges outward of the charge along the side of the square between the corner and one of the charges toward the charge along the line between the...
GOAL Use the superposition principle to calculate the electric field due to two point charges. Consider...
GOAL Use the superposition principle to calculate the electric field due to two point charges. Consider the following figure. The resultant electric field  at P equals the vector sum 1 + 2, where 1 is the field due to the positive charge q1and 2 is the field due to the negative charge q2.Two point charges lie along the x-axis in the x y-coordinate plane. Positive charge q1 is at the origin, and negative charge q2 is at (0.300 m, 0). Point...
Which of the following is a correct statement? (1 point) The direction of the electric field...
Which of the following is a correct statement? (1 point) The direction of the electric field due to a negative point charge is directed away from the charge. The direction of the electric force on a positive charge is opposite to the direction of the electric field at its location. The magnitude of the electric field due to a point charge is inversely proportional to the square of the distance between the charge and the point. The unit of measurement...
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m....
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m. What is the strength of the field at a distance of 6.0 m? 24. An alpha (α) particle is positioned in an electric field such that the gravitational force acting on it is equal to the electrostatic force.              (qα = 3.2 x 10–19 C and mα = 6.64 x 10–27 kg) a) What is the direction of the electric field at this point?...
A) Calculate the electric field (magnitude and direction) at the upper right corner of a square...
A) Calculate the electric field (magnitude and direction) at the upper right corner of a square 1.22 m on a side if the other three corners are occupied by 2.45
A uniform (Constant in magnitude and direction) electric field has magnitude E and is directed in...
A uniform (Constant in magnitude and direction) electric field has magnitude E and is directed in the negative x direction. The potential difference between point a (at x= 0.50 m ) and point b (at x= 0.85 m ) is 370 V. A) Calculate the value of E B) A negatively charged point charge q=−0.200μC is moved from b to a. Calculate the work done on the point charge by the electric field.