Question

A 50 kg woman stands at the rim of a horizontal turntable having a moment of...

A 50 kg woman stands at the rim of a horizontal turntable having a moment of inertia of 560 kg·m2 and a radius of 2.0 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.5 m/s relative to the Earth.

(a) In what direction and with what angular speed does the turntable rotate?

clockwise or counterclockwise    


rad/s

(b) How much work does the woman do to set herself and the turntable into motion?
J

Homework Answers

Answer #1

(a) We know that, Linitial = Lfinal

(L1 + L2)i = (L1 + L2)f

since, initially the system is at rest.

0 = (L1 + L2)f

0 = I11 + I22

1 = - I22 / I1    { eq.1 }

1 = - (m r2) (v/r) / I1

1 = - m r v / I1 = - [(50 kg) (2 m) (1.5 m/s)] / (560 kg.m2)

1 = 0.267 rad/s

{ it's direction will be counter clockwise }

(b) How much work does the woman do to set herself & the turntable into motion?

we know that, W = K.E

W = (K.Efinal - K.Einitial)

W = [(1/2) I112 + (1/2) m v2] - (0 J)

W = [(0.5) (560 kg.m2) (-0.267 rad/s)2 + (0.5) (50 kg) (-1.5 m/s)2]

W = 76.2 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia...
A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 420 kg · m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. (a) In what direction does the turntable rotate?...
A 65.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia...
A 65.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 460 kg · m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. (a) In what direction does the turntable rotate?...
A Texas cockroach of mass 0.177 kg runs counterclockwise around the rim of a lazy Susan...
A Texas cockroach of mass 0.177 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has a radius 14.1 cm, rotational inertia 5.88 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.73 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 3.38 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular...
A Texas cockroach of mass 0.108 kg runs counterclockwise around the rim of a lazy Susan...
A Texas cockroach of mass 0.108 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has a radius 12.4 cm, rotational inertia 4.19 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.81 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 3.56 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular...
A boy stands at the center of a turntable, which has a moment of inertia of...
A boy stands at the center of a turntable, which has a moment of inertia of 1.50 kg·m2 about an axis through its center. The boy's moment of inertia about the same axis, when he holds his arms in, is 1.10 kg·m2; when he sticks his arms straight out, his moment of inertia is 1.80 kg·m2. He and the turntable are initially rotating at a rate of 2.00 rad/s, with his arms extended.             a.         He pulls in his arms. What is...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a radius of 1.80 m and a rotational inertia of 347 kg·m2 about the axis of rotation. A 58.4 kg student walks slowly from the rim of the platform toward the center. If the angular speed of the system is 1.49 rad/s when the student starts at the rim, what is the...
A uniform cylindrical turntable of radius 2.00 m and mass 31.2 kg rotates counterclockwise in a...
A uniform cylindrical turntable of radius 2.00 m and mass 31.2 kg rotates counterclockwise in a horizontal plane with an initial angular speed of 4? rad/s. The fixed turntable bearing is frictionless. A lump of clay of mass 2.42 kg and negligible size is dropped onto the turntable from a small distance above it and immediately sticks to the turntable at a point 1.90 m to the east of the axis. 1. Find the final angular speed of the clay...
An 80 kg person is standing on the edge of a 50 kg disk whose radius...
An 80 kg person is standing on the edge of a 50 kg disk whose radius is 1.5 m that can rotate about a pivot in its center. The person starts walking clockwise around the disk and the disk acquires an angular velocity of 3.0 rad/s. Q1) What is the speed (m/s) at which the person is walking on the disk? Q2) What is the magnitude of the person’s angular velocity (rad/s) relative to the ground? Q3) what is the...
A 55kg runner runs around the edge of a horizontal turntable mounted on a vertical frictionless...
A 55kg runner runs around the edge of a horizontal turntable mounted on a vertical frictionless axis through its center. The runners velocity relative to the earth has a magnitude 2.8 m/s The turntable is rotating in the opposite direction with an angular velocity of magnitude 0.2 rad/s relative to the earth The radius of the turntable is 3.0 m and the moment of inertial about the axis of rotation is 85 kg/m^2 find the angular velocity of the turntable...
A large horizontal circular platform (M=91 kg, r=3.99 m) rotates about a frictionless vertical axle. A...
A large horizontal circular platform (M=91 kg, r=3.99 m) rotates about a frictionless vertical axle. A student (m=77.93 kg) walks slowly from the rim of the platform toward the center. The angular velocity ω of the system is 3.8 rad/s when the student is at the rim. Find the moment of inertia of platform through the center with respect to the z-axis. Find the moment of inertia of the student about the center axis (while standing at the rim) of...