Question

Consider an inelastic collision between two spheres of different masses, m1= 1kg and m2=3 kg, in...

Consider an inelastic collision between two spheres of different masses, m1= 1kg and m2=3 kg, in the +x direction. Ball M1 is moving at speed, v1=3.0ms, and ball 2 is moving towards ball 1 at speed, v2=1 kg.

1. What will happen to the velocities of the two balls after a completely inelastic collision? Explain your reasoning. Do NOT do any calculation yet. Use your physical intuition and what know so far about collisions.

2. Which physical principles were used to find velocities of balls? Calculate the final velocities of the balls after the collsion.

3. What is the change in internal energy?

Homework Answers

Answer #1

1. A perfectly inelastic Collison there is maximum loss in kinetic energy, which in one dimensional head on collision corresponds to the object after colliding sticks together and move as a single object. So after the collision both ball will move with same velocity.

2. We will use principle of conservation of momentum to find out the final velocity. Suppose the final velocity is v. Then final momentum = (m1+me). v

Initial momentum = m1.V1 + m2.​​​​V2

So in +X direction, initial momentum is

Pi = (1.3 -3. 1 ) kg m/sec =0

Pf = Pi= 0

So the final velocity of the combined object is zero.

3.

Change in internal energy = loss in kinetic energy = K.E(initial) - K.E(final) = K.E(initial) - 0 = 6 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose we are looking at a collision of two masses in 1D. The masses are m1...
Suppose we are looking at a collision of two masses in 1D. The masses are m1 and m2, their initial velocities are V10 and V20 and their final velocities are v1 and v2. Momentum is conserved in this collision which means that it should be possible to express v2 in terms of v1 and other constants. a) determine the final speeds of m1 and m2 in terms of v1 and other constants b) determine the initial and final kinetic energies...
Two objects collide in a totally inelastic collision. Just before the collision, the objects have the...
Two objects collide in a totally inelastic collision. Just before the collision, the objects have the following masses and velocities: M1 = 4.5 kg, v1 = 1.5 m/s @ 140o. M2 = 1.5 kg, v2 = 1 m/s @ 180o. a) Find the velocity of the object after the collision. b) How much kinetic energy was lost in the collision.
Two-car, 2-D collision. Two cars with masses m1 = 1200 kg and m2 = 1500 kg...
Two-car, 2-D collision. Two cars with masses m1 = 1200 kg and m2 = 1500 kg are approaching an intersection. Car 1 has a velocity v1 = 15.0 m/s towards the east and car 2 has a velocity v2 = 20.0 m/s towards the north. The two cars reach the intersection at the same time and collide and lock bumpers and after the collision travel as a single wreckage. (a) What is the magnitude and direction of their velocity after...
Imagine two carts with different masses colliding (m1 = 1.0 kg, m2 = 2.0 kg). If...
Imagine two carts with different masses colliding (m1 = 1.0 kg, m2 = 2.0 kg). If cart one is initially moving at 10 m/s and the other cart is moving at -5.0 m/s, calculate the final speed of each mass after they have a 100% inelastic collision. Please show all work!
In the lab frame two masses, m1=10 kg and m2=6 kg collide elastically in one dimension...
In the lab frame two masses, m1=10 kg and m2=6 kg collide elastically in one dimension with initial velocities v1=17 m/s and v2=3 m/s. Calculate the kinetic energy of mass mn after the collision, where n=2. Enter responses using three significant digits.
3 elastic balls (with masses m1,m2,m3) at rest are lined up along a straight line on...
3 elastic balls (with masses m1,m2,m3) at rest are lined up along a straight line on a smooth plane. At t=0, ball 1 moves along the line at velocity v1. Assume v1,m1 and m3 are given. Find the mass of the second ball (m2) such that the 3rd ball is at max velocity after the collisions.
Two balls with masses of m1 = 10 kg and m2 = 50 kg undergo an...
Two balls with masses of m1 = 10 kg and m2 = 50 kg undergo an elastic collision with the first ball traveling east with a velocity of $$m/s and the second ball traveling west with a velocity of 10 m/s. Find the speeds and the direction of the of the two balls after the collision . show all work to get to answer
Two balls with masses of m1 = 10 kg and m2 = 50 kg undergo an...
Two balls with masses of m1 = 10 kg and m2 = 50 kg undergo an elastic collision with the first ball traveling east with a velocity of 50m/s and the second ball traveling west with a velocity of 10 m/s. Find the speeds and the direction of the of the two balls after the collision . show all work to get to answer
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a...
A block of mass m1 = 1.20 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.500 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.60 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...
Consider two satellites, with masses M1 = 18.2 kg and M2 = 15.5 kg, moving in...
Consider two satellites, with masses M1 = 18.2 kg and M2 = 15.5 kg, moving in the same circular orbit of radius 6300 km around a planet MP = 4.4 × 1022kg. a) They have opposite senses of rotation, and are therfore on a collision course. Find the total mechanical energy E1 + E2 of the two-satellites-plus-planet system before the collision. b) If the collision is completely inelastic so that wreckage remains as one piece of tangled material (mass =...