Question

A stick with a varying linear charge density of λ = (14 - 1x) nC/m lays...

A stick with a varying linear charge density of λ = (14 - 1x) nC/m lays on the x axis from x = 6 m to 10 m. Find the electric field and the electric potential at point P, at the origin, x = 0 m. Note thatλ is no longer a constant! Compare your answers to those of question 1a. Why do your results make sense? Note that the charge density is 8 nC/m when x = 6 m!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Please provide steps, thank you A uniform line charge of linear charge density lambda = 4.3...
Please provide steps, thank you A uniform line charge of linear charge density lambda = 4.3 nC/m extends from x = 0 to x = 5 m. a. Find the electric field on the x axis at x = 6 m. (N/C) b. Find the electric field on the x axis at x = 280 m. (N/C) c. Find the field at x = 280 m, using the approximation that the charge is a point charge at the origin. (N/C)...
A charge (uniform linear density = 6 nC/m) is distributed along the x axis from x...
A charge (uniform linear density = 6 nC/m) is distributed along the x axis from x = 0 to x = 3.0 m. Determine the magnitude of the electric field at a point on the x axis with x = 4.0 m.
A charge (uniform linear density = 6.1 nC/m) lies on a string that is stretched along...
A charge (uniform linear density = 6.1 nC/m) lies on a string that is stretched along an x axis from x = 0 to x = 2.3 m. Determine the magnitude of the electric field at x = 6.5 m on the x axis.
An infinitely long line charge of uniform linear charge density λ = -2.10 µC/m lies parallel...
An infinitely long line charge of uniform linear charge density λ = -2.10 µC/m lies parallel to the y axis at x = -3.00 m. A point charge of 2.40 µC is located at x = 2.00 m, y = 3.00 m. Find the electric field at x = 3.00 m, y = 2.50 m.
A charge (uniform linear density = 9.0 nC/m) is distributed along the x axis from x...
A charge (uniform linear density = 9.0 nC/m) is distributed along the x axis from x = 0 to x = 3.0 m. Determine the magnitude of the electric field at a point on the x axis with x = 4.0 m. The answer is 61 i want to see the solution to this problem
A charge of uniform density (29 nC/m) is distributed along the x axis from the origin...
A charge of uniform density (29 nC/m) is distributed along the x axis from the origin to the point x = 20.9 m. What is the electric potential (relative to zero at infinity) at a point, x = 79 m, on the x axis?
An infinite sheet of charge that has a surface charge density of 19 nC/m2 lies in...
An infinite sheet of charge that has a surface charge density of 19 nC/m2 lies in the yz plane, passes through the origin, and is at a potential of 0.7 kV . A long wire having a linear charge density of 91 nC/m lies parallel to the y axis and intersects the x axis at (4.2 m, 0, 0). What is the potential energy of a 1.9 nC charge placed at (1.1 m, 0, 0) ? The value of the...
a) A -1.0 nC point charge is located at (2.0 m, 0), and a -18 nC...
a) A -1.0 nC point charge is located at (2.0 m, 0), and a -18 nC point charge is located at (0, 6 m). What is the magnitude of the net electric field at the origin? Express your answer with the appropriate units. b) What is the direction of the net electric field at the origin? Find the angle measured from the positive xx axis to the net electric field. Express your answer in degrees.
A -3.00 nC point charge is at the origin, and a second -6.50 nC point charge...
A -3.00 nC point charge is at the origin, and a second -6.50 nC point charge is on the x-axis at x = 0.800 m. a. Find the electric field (magnitude and direction) at point on the x-axis at x = 0.200 m. b.Find the electric field (magnitude and direction) at point on the x-axis at x= 1.20 m. c.Find the electric field (magnitude and direction) at point on the x-axis at x = -0.200 m.
A nonuniform linear charge distribution given by λ(x) = bx, where b is a constant, is...
A nonuniform linear charge distribution given by λ(x) = bx, where b is a constant, is distributed along the x axis from x = 0 to x = +L. If b = 40 nC/m and L = 0.72 m, what is the electric potential (relative to a potential of zero at infinity) at the point y = 2L on the y axis?