Question

Calculate the probability that a particle in ideal gas has its velocity vector (vx, vy, vz)....

Calculate the probability that a particle in ideal gas has its velocity vector (vx, vy, vz). such that the x− component of its velocity is within the interval 0 < vx < v_ave (where v_ave is the average speed of an ideal monoatomic gas)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a gas particle is moving toward the right wall of a container. Its velocity com-...
Suppose a gas particle is moving toward the right wall of a container. Its velocity com- ponents before the wall collision are vx, vy, and vz. What are its three velocity components after it undergoes an elastic collision with the right wall?
.The x and y components of the velocity of a particle are: vx = (2 t...
.The x and y components of the velocity of a particle are: vx = (2 t + 4) p / s vy = (8 ⁄ y) p / s Initially, the particle is located at the coordinates x = 1 and y = 0. Determine the position, the magnitude of the velocity and the magnitude of the particle's acceleration when t = 2 s.
The x and y components of the velocity of a particle are Vx=(2t + 4)ft/s &...
The x and y components of the velocity of a particle are Vx=(2t + 4)ft/s & Vy=(8/y)ft/s. Initially, the particle if found at coordinates x=1 and y=0. Determine the position, magnitude of velocity, and magnitude of the acceleration of the particle when t = 2s
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive xx direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   answer is 0,219,0 m/s why is...
A dog running in an open field has components of velocity vx = 3.0 m/s and...
A dog running in an open field has components of velocity vx = 3.0 m/s and vy = -1.7 m/s at time t1= 10.0 s . For the time interval from t1 = 10.0 s to t2= 22.0 s , the average acceleration of the dog has magnitude 0.45 m/s2 and direction 31.5 ∘measured from the +x−axis toward the +y−axis. At time t2 = 22.0 s , what is the x-component of the dog's velocity? At time t2 = 22.0...
A dog running in an open field has components of velocity vx = 3.0 m/s and...
A dog running in an open field has components of velocity vx = 3.0 m/s and vy = -1.2 m/s at time t1 = 11.7 s . For the time interval from t1 = 11.7 s to t2 = 23.8 s , the average acceleration of the dog has magnitude 0.54 m/s2 and direction 25.0 ? measured from the +x?axis toward the +y?axis. A)At time t2 = 23.8 s , what is the x-component of the dog's velocity? B)At time...
computer model displays the motion of a particle on a coordinate system in real time. At...
computer model displays the motion of a particle on a coordinate system in real time. At time t = 0, the particle is at the origin of the coordinate system and has velocity components vx = 0 and vy = 5.2 m/s. The particle has acceleration components of ax = −4.4 m/s2 and ay = 0. (a) What are the x and y positions of the particle at t = 6.0 s? x = m y = m (b) What...
A velocity vector 55 ∘ above the positive x-axis has a y-component of 11 m/s ....
A velocity vector 55 ∘ above the positive x-axis has a y-component of 11 m/s . Part A What is the value of its x-component? Express your answer using two significant figures. vx =   m/s   SubmitRequest Answer
Suppose that the position vector for a particle is given as a function of time by...
Suppose that the position vector for a particle is given as a function of time by vector r (t) = x(t)î + y(t)ĵ, with x(t) = at + b and y(t) = ct2 + d, where a = 1.90 m/s, b = 1.10 m, c = 0.128 m/s2, and d = 1.12 m. (a) Calculate the average velocity during the time interval from t = 2.05 s to t = 3.75 s. vector v = m/s (b) Determine the velocity...
A particle travels along the path defined by the parabola y=0.2x^2. If the component of velocity...
A particle travels along the path defined by the parabola y=0.2x^2. If the component of velocity along t he x axis is Vx=(2.9t)ft/s, where t is in seconds. determine the magnitude of the particle's acceleration when t = 1s. when t = 0 , x =0 and y = 0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT