Question

A 50 gram lead bullet is fired at 450 m/s to a 3 kg block of...

A 50 gram lead bullet is fired at 450 m/s to a 3 kg block of copper and penetrates the block. Assuming that the bullet does not leave the block, if the initial temperature of the bullet is 60°C and the block is originally at 30°C,

a) Find the final temperature of the bullet-block system. (Assume that the system is isolated and there is no heat escaping the system)

b) Is the dissipated energy (due to the collision) enough to melt the bullet inside the block? Why?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits...
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits at rest on a wooden table 20 cm from the edge of the table. The bullet gets embedded in the block (perfectly inelastic collision). The block, with the embedded bullet, then slides to the edge of the table and drops down with some initial velocity while leaving the edge of the table. The coefficient of kinetic friction between the block and the surface of...
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg...
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg which then compresses a spring (k=100N/m by a distance of x=0.1 before coming to rest. the bullet remains embedded in the wooden block. ignore friction between the block and table. a) what is initial speed of the bullet? b) calculate total kinetic energy of the bullet block-system immediately before and after the collision. is the collision between the bullet and the block elastic or...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase M), suspended like a pendulum, and makes a completely inelastic collision with it. After the impact of the bullet, the block swings up to a maximum height h. Given the values of h = 5.00 cm = 0.0500 m, m = 6.75 g = 0.00675 kg, and M = 2.50 kg, (a) What is the (initial) velocity v_x of the bullet in m/s? (b)...
A 2.03-g lead bullet traveling at 508 m/s strikes a target, converting its kinetic energy into...
A 2.03-g lead bullet traveling at 508 m/s strikes a target, converting its kinetic energy into thermal energy. Its initial temperature is 40.0°C. The specific heat is 128 J/(kg · °C), latent heat of fusion is 24.5 kJ/kg, and the melting point of lead is 327°C. (a) Find the available kinetic energy of the bullet. J (b) Find the heat required to melt the bullet. J
13. A 10.0-g bullet is fired into a stationary block of wood (m = 5.00 kg)...
13. A 10.0-g bullet is fired into a stationary block of wood (m = 5.00 kg) at the speed of 300 m/s, the relative motion of the bullet stops inside the block. Determine the speed of the bullet-plus-wood combination immediately after the collision.
bullet of mass m=14 gr is fired into a block of mass M=2 kg initially at...
bullet of mass m=14 gr is fired into a block of mass M=2 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.66 m from the bottom of the table. a)Determine the initial velocity of the bullet. vi=  m/s b) Determine the loss of kinetic Energy during the collision. ΔK =  J
Block of mass 10 kg is hit and penetrated by a 50 g bullet. As result...
Block of mass 10 kg is hit and penetrated by a 50 g bullet. As result of the collision the “block + bullet system.” (Originally on the horizontal frictionless table) enters the horizontal rough surface ( μkin=0.7) and stops after 5m. Find the entropy change due to the inelastic collision (∆Scollision) and the entropy change due to friction (∆Sfrict),. The temperature remains constant throughout these processes (T=27C)
A bullet of mass 1.4×10−3 kg embeds itself in a wooden block with mass 0.987 kg...
A bullet of mass 1.4×10−3 kg embeds itself in a wooden block with mass 0.987 kg , which then compresses a spring (k = 130 N/m ) by a distance 5.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.46. a)What is the initial speed of the bullet? b)What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the...
A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.991 kg...
A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.991 kg , which then compresses a spring (k = 200 N/m ) by a distance 3.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.52. a)What is the initial speed of the bullet? b)What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between the...
A firearms company is testing a new model of rifle by firing a 7.50-g lead bullet...
A firearms company is testing a new model of rifle by firing a 7.50-g lead bullet into a block of wood having a mass of 17.5 kg. The bullet embeds into the block and the collision generates heat. As a consequence, the temperature rises by 0.040°C, as measured with a high-precision thermometer. Assuming that all the kinetic energy of the bullet goes into heating the system, what is the bullet’s speed when it enters the block? The initial temperatures of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT