Question

Suppose a negatively charged particle is moving in the -y direction. In what direction must a...

Suppose a negatively charged particle is moving in the -y direction. In what direction must a magnetic field be oriented to cause a magnetic force acting in the +x direction?

Homework Answers

Answer #1

in the magnetic field , the magnetic force is given by

vector F = q ( vector V x vector B )

here q = -e

vector F = - e ( vector V x vector B )

the direction of magnetic force is given by right hand rule

it states that for the positive charge particle the thumb of right hand point in the direction of velocity, and the fingurs in the direction of magnetic field , then the magnetic force is directed perpendicular to the right hand palm

here particle move in negative y- direction so we place our thumb in - y direction

and magnetic force acting in the + x direction so our right hand palm placed perpendicular to + x direction

then we get our fingurs direction is in the inner of the page which represent the direction of magnetic field

here negative charge particle are used so the the direction of magnetic field is out of the page

so the magnetic field is in positive z direction Ans

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A charged particle of mass m = 4.6X10-8 kg, moving with constant velocity in the y-direction...
A charged particle of mass m = 4.6X10-8 kg, moving with constant velocity in the y-direction enters a region containing a constant magnetic field B = 2.3T aligned with the positive z-axis as shown. The particle enters the region at (x,y) = (0.79 m, 0) and leaves the region at (x,y) = 0, 0.79 m a time t = 409 μs after it entered the region. 1. With what speed v did the particle enter the region containing the magnetic...
What is the force from the magnetic field on a charged particle moving parallel to a...
What is the force from the magnetic field on a charged particle moving parallel to a magnetic field? What is the force on a stationary charged particle in a magnetic field?
A point charge q is moving in uniform electric field (E0 in the z-direction) and uniform...
A point charge q is moving in uniform electric field (E0 in the z-direction) and uniform magnetic field (B0 field in the x-direction). (i) What is the force acting on the charge particle? Find equations of motion for the charge particle. (ii) Assume that initially the charge is placed the origin and has initial velocity (E0/2B0) in the y-direction. Determine position and velocity of the charge particle as a function of time. (iii) Find the trajectory of the particle and...
a. Explain with a neat diagram the Magnetic Force on a charged particle moving with a...
a. Explain with a neat diagram the Magnetic Force on a charged particle moving with a constant velocity due to a uniform magnetic field. b. Derive the cyclotron frequency of a moving charged particle in a uniform magnetic field.
A moving proton experiences force from a magnetic field. true or false If the charged particle...
A moving proton experiences force from a magnetic field. true or false If the charged particle experiences a downward force (towards the bottom of the screen), what is the sign of the charge? true or false If there were an electric field pointing into the computer screen instead of a magnetic field, what would be the direction of force on the charge?
Two charged particles are moving with equal velocities of 2.40 m/s in the +x-direction. At one...
Two charged particles are moving with equal velocities of 2.40 m/s in the +x-direction. At one instant of time the first particle with a charge of 6.20 μμC is located at x = 0 and y = +6.00 cm, and the second particle with a charge of 2.00 μμC is located at x = 0 and y = -6.00 cm. a) What is the y-component of the magnetic force on the first particle due to the second? b) How fast...
A positively charged particle moves in the positive z-direction. The magnetic force on the particle is...
A positively charged particle moves in the positive z-direction. The magnetic force on the particle is in the positive y-direction. What can you conclude about the z-component of the magnetic field at the particle’s position? A. Bx > 0 B. Bx ​= 0 C. Bx ​< 0 D. Not enough information to decide THE ANSWER IS NOT D ACCORDING TO MY PROFESSOR. PLEASE EXPLAIN.
10- A particle moving at speed of 3x105 m/s enters perpendicularly in to a uniform magnetic...
10- A particle moving at speed of 3x105 m/s enters perpendicularly in to a uniform magnetic field of 0.10 tesla .what is the magnitude and the direction of magnetic force acting on the particle by the magnetic field . a) The particle is an electron. b) The particle is a proton.
1)A particle moving to the right in a uniform magnetic field directed upwards experiences a magnetic...
1)A particle moving to the right in a uniform magnetic field directed upwards experiences a magnetic force directed inwards. The particle is (A) positively charged. (B) negatively charged. (C) uncharged. (D) Either A or B. (E) Any of the above. 2) A charged particle moves in a uniform magnetic field which is perpendicular to the particle’s velocity. Which of the following statements is/are correct? (A) The particle moves in a circle. (B) The kinetic energy of the particle does not...
A charged particle is moving through a magnetic field. Under what circumstances does it not experience...
A charged particle is moving through a magnetic field. Under what circumstances does it not experience a magnetic force? (Do not just state the answer but also explain why.)