Question

A 2.70 μF capacitor is charged to 500 V and a 3.95 μF capacitor is charged...

A 2.70 μF capacitor is charged to 500 V and a 3.95 μF capacitor is charged to 525 V .

a) These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor?

b) What will be the charge on each capacitor?

c) What is the voltage for each capacitor if plates of opposite sign are connected?

d) What is the charge on each capacitor if plates of opposite sign are connected?

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.85 μF capacitor is charged to 490 V and a 3.80 μF capacitor is charged...
A 2.85 μF capacitor is charged to 490 V and a 3.80 μF capacitor is charged to 525 V . A) These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor? (Enter your answers numerically separated by a comma.) B) What will be the charge on each capacitor? (Enter your answers numerically separated by...
A 2.50-μF capacitor is charged to 754 V and a 6.80-μF capacitor is charged to 574...
A 2.50-μF capacitor is charged to 754 V and a 6.80-μF capacitor is charged to 574 V . These capacitors are then disconnected from their batteries. Next the positive plates are connected to each other and the negative plates are connected to each other. What will be the potential difference across each and the charge on each? [Hint: Charge is conserved.] Determine the potential difference across the first capacitor. Determine the potential difference across the second capacitor. Determine the charge...
A 2.50 F capacitor is charged to 857 V and a 6.80F capacitor is charged to...
A 2.50 F capacitor is charged to 857 V and a 6.80F capacitor is charged to 652 V. These capacitors are then disconnected from their batteries. Next the positive plates are connected to each other and the negative plates are connected to each other. What will be the potential difference across each and the charge on each? [Hint: charge is conserved.]
A 27.0-μF capacitor and a 50.0-μF capacitor are charged by being connected across separate 40.0-V batteries....
A 27.0-μF capacitor and a 50.0-μF capacitor are charged by being connected across separate 40.0-V batteries. (a) Determine the resulting charge on each capacitor. (Give your answer to at least three significant figures.) 27.0-μF capacitor     1.08   mC 50.0-μF capacitor     2    mC (b) The capacitors are then disconnected from their batteries and connected to each other, with each negative plate connected to the other positive plate. What is the final charge of each capacitor? 27.0-μF capacitor     ????? 50.0-μF capacitor     ????? (c)...
Two capacitors of capacitances 1.1 μF and 4.7 μF are each charged separately by being connected...
Two capacitors of capacitances 1.1 μF and 4.7 μF are each charged separately by being connected across a 7.8 V battery. After being fully charged, they are disconnected from the battery and then connected to each other using wires so that the plates of opposite charges are connected together. What will be the magnitude of the final voltage (in V) across the 4.7 μF capacitor?
Two capacitors C1 = 4.5 μF, C2 = 19.4 μF are charged individually to V1 =...
Two capacitors C1 = 4.5 μF, C2 = 19.4 μF are charged individually to V1 = 19.7 V, V2 = 7.7 V. The two capacitors are then connected together in parallel with the positive plates together and the negative plates together. - Calculate the final potential difference across the plates of the capacitors once they are connected. - Calculate the amount of charge (absolute value) that flows from one capacitor to the other when the capacitors are connected together. -...
Two capacitors C1 = 5.6 μF, C2 = 15.1 μF are charged individually to V1 =...
Two capacitors C1 = 5.6 μF, C2 = 15.1 μF are charged individually to V1 = 18.0 V, V2 = 5.7 V. The two capacitors are then connected together in parallel with the positive plates together and the negative plates together. a) Calculate the final potential difference across the plates of the capacitors once they are connected. b) Calculate the amount of charge (absolute value) that flows from one capacitor to the other when the capacitors are connected together. c)...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0 kV potential difference. The charged capacitors are then disconnected from the source and connected to each other with terminals of like sign together. Find the charge on each capacitor (in mC) and the voltage across each capacitor (in V).
Two capacitors, one of 5 μF and the other of 8 μF, connected in parallel, are...
Two capacitors, one of 5 μF and the other of 8 μF, connected in parallel, are charged with a 12 volt battery. The battery is then disconnected, and while the capacitors remain connected in parallel, a dielectric with constant 2 is inserted between the plates of the 8 μF capacitor. What is the voltage across this capacitor after the dielectric is inserted?
When an air capacitor with a capacitance of 340 nF (1 nF = 10−9F) is connected...
When an air capacitor with a capacitance of 340 nF (1 nF = 10−9F) is connected to a power supply, the energy stored in the capacitor is 1.65×10−5 J . While the capacitor is kept connected to the power supply, a slab of dielectric is inserted that completely fills the space between the plates. This increases the stored energy by 2.30×10−5 J What is the potential difference between the capacitor plates? What is the dielectric constant of the slab? Two...