Question

A 30 nC point charge is positioned at the origin and a -20 nC point charge...

A 30 nC point charge is positioned at the origin and a -20 nC point charge is positioned on the x-axis at 1.0 m. Take the electric potential to be zero at infinity. To three significant figures, determine: a) the electric potential on the x-axis at 0.5 m. (1 pt) b) the electric potential on the x-axis at 1.5 m. (1 pt) c) the electric potential energy stored between the charges. (1 pt)

please help me

Homework Answers

Answer #1

charge q1 = 30 nC = 30 x 10-9 C

charge q2 = -20 nC = - 20 x 10-6

distance between two charges, r = 1 m

a)

electric potential at a point at x = 0.5 m is V = potential due to q1 + potential due to q2

V = 1/4πε0 q1/0.5 + 1/4πε0 q2/0.5 = 9 x 109 x 30 x 10-9 /0.5 - 9 x 109 x 20 x 10-9 /0.5

V = 180 v

electric potential at a point at x = 0.5 m is V = 180 V

b)

electric potential at a point at x = 1.5 m is V = potential due to q1 + potential due to q2

V = 1/4πε0 q1/1.5 + 1/4πε0 q2/0.5 = 9 x 109 x 30 x 10-9 /1.5 - 9 x 109 x 20 x 10-9 /0.5

V = -180 v

electric potential at a point at x = 1.5 m is V = -180 V

c)

potential energy stored between the charges, U = 1/4πε0 q1 q2/r

U = 9 x 109 x 30 x 10-9 x -20 x 10-9 /1 = -5.4 x 10-6 J

potential energy stored between the charges, U = -5.40 x 10-6 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -2.90 nC is placed on the x-axis at x=+ 21.0 cm. A third point charge q3 = 2.00 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) a- What is the potential energy of the system of the three charges if q3...
A point charge q1 = 3.90 nC is placed at the origin, and a second point...
A point charge q1 = 3.90 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 20.0 cm . A third point charge q3 = 2.10 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) PART A: What is the potential energy of the system of the three charges...
A point charge q1 = 4.05 nC is placed at the origin, and a second point...
A point charge q1 = 4.05 nC is placed at the origin, and a second point charge q2 = -3.05 nC is placed on the x-axis at x=+ 21.0 cm . A third point charge q3= 1.90 nC is to be placed on the x-axis between q1and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) PART A - What is the potential energy of the system of the three charges if...
A point charge q1 = 4.10 nC is placed at the origin, and a second point...
A point charge q1 = 4.10 nC is placed at the origin, and a second point charge q2 = -3.10 nC is placed on the x-axis at x=+ 21.0 cm . A third point charge q3 = 1.90 nC is to be placed on the x-axis between q1 and q2. (Take as zero the potential energy of the three charges when they are infinitely far apart.) Part A What is the potential energy of the system of the three charges...
A -4.00 nC point charge is at the origin, and a second +8.00 nC point charge...
A -4.00 nC point charge is at the origin, and a second +8.00 nC point charge is on the x-axis at x = 60 cm. Find the net electric force that the two charges would exert on a proton placed at x = 30cm? At what location would the net electric field due to the two charges be zero?
A point charge q1=4.20 nC is fixed at the origin. A second point charge q2=−7.80 nC...
A point charge q1=4.20 nC is fixed at the origin. A second point charge q2=−7.80 nC is fixed at the point x=15.0 cm. (a) Find the point on the +x axis where the electric potential is zero. (b) A third charge, q3=−2.30 nC is then placed at the point x=20.0 cm. Find the net force acting on charge q2 due to the other two charges.
A charge of uniform density (29 nC/m) is distributed along the x axis from the origin...
A charge of uniform density (29 nC/m) is distributed along the x axis from the origin to the point x = 20.9 m. What is the electric potential (relative to zero at infinity) at a point, x = 79 m, on the x axis?
Three point charges are placed on the x-y plane: a +30.0 nC charge at the origin,...
Three point charges are placed on the x-y plane: a +30.0 nC charge at the origin, a -30.0 nC charge on the x axis at 10.0 cm, and a +110 nC charge at the point (10.0 cm, 8.00 cm) 1.) Find the x component of the total electric force on the +110 nC charge due to the other two. (Express your answer to two significant figures.) Answer in mN 2.) Find the y component of the total electric force on...
A -3.00 nC point charge is at the origin, and a second -6.50 nC point charge...
A -3.00 nC point charge is at the origin, and a second -6.50 nC point charge is on the x-axis at x = 0.800 m. a. Find the electric field (magnitude and direction) at point on the x-axis at x = 0.200 m. b.Find the electric field (magnitude and direction) at point on the x-axis at x= 1.20 m. c.Find the electric field (magnitude and direction) at point on the x-axis at x = -0.200 m.
A 2 nC point charge is at the origin, and a second 5 nC point charge...
A 2 nC point charge is at the origin, and a second 5 nC point charge is on the x-axis at x = 8 m. Find the electric field (magnitude and direction) at the point x = 2 m.