Question

A person starts from rest at the top of a large frictionless spherical surface, and slides...

A person starts from rest at the top of a large frictionless spherical surface, and slides into the water below at what angle θ does the person leave the surface? (Hint: When the person leaves the surface, the normal force is zero.)

Homework Answers

Answer #1

let the person leaves at angle theta

mg cos(theta) - N = mv^2 / r

since at this theta , N = 0

=> mg cos(theta) = mv^2 / r

=> g cos(theta) = v^2 / r

=> v^2 = gr cos(theta) -------------eq1

also

dKE + dPE = 0;

=> 1/2mv^2 - mg r ( 1 -cos(theta) ) = 0

=> 1/2 v^2 = g r ( 1 -cos(theta) )

using eq1 ,

=> 1/2 gr cos(theta) = gr ( 1 - cos(theta) )

=> 1/2 cos(theta) = ( 1 - cos(theta) )

=> 3/2 cos(theta) = 1

=> cos(theta) = 2 /3

=> theta = 48.18 degree

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object slides down a frictionless incline surface. If it starts from rest at a height...
An object slides down a frictionless incline surface. If it starts from rest at a height of 2.7 m, what will be its final velocity? (5 points) What was its velocity in the middle of trip? (5 points) [Hint: Draw a diagram and apply law of conservation of energy.]
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp that makes an angle of 36.2 ^\circ ∘ below the horizontal. After it slides without friction down the entire 2.89 m length of the ramp, it begins to slide horizontally along a rough concrete surface with a coefficient of kinetic friction of \mu_kμ k = 0.503 until it slows to a complete stop. How far does the block slide horizontally along the concrete before...
A 79.0-kg skier starts from rest and slides down a 36.0-m frictionless slope that is inclined...
A 79.0-kg skier starts from rest and slides down a 36.0-m frictionless slope that is inclined at an angle of 15.0° with the horizontal. Ignore air resistance. (a) Calculate the work done by gravity on the skier and the work done by the normal force on the skier. Work done by gravity? Work done by normal force? (b) If the slope is not frictionless so that the skier has a final velocity of 4 m/s, calculate the work done by...
A 5kg object slides down a frictionless surface inclined at an angle of 30º from the...
A 5kg object slides down a frictionless surface inclined at an angle of 30º from the horizontal. The total distance moved by the object along the plane is 10 meters. The work done on the object by the normal force of the surface is? The answer is zero. They they that the angle is 90degrees?? But it says 30 degrees! where do they get cos(90) from? me I get cos(30)
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough horizontal surface until it comes to rest. The coefficient of kinetic friction between the horizontal surface and the crate is 0.27. If the crate’s initial height is 9 m, find the distance it travels on the horizontal surface.
Two blocks are stacked as shown to the right and rest on a frictionless surface. There...
Two blocks are stacked as shown to the right and rest on a frictionless surface. There is friction between the two blocks (coefficient of friction μ). An external force is applied to the top block at an angle θ to the horizontal. What is the maximum force F that can be applied for the two blocks to move together? Give your answer in terms of the variables from the problem statement in addition to g for gravitational acceleration.
You have a mass at the top of a frictionless 85 cm ramp that has been...
You have a mass at the top of a frictionless 85 cm ramp that has been raised to an angle of 30° above the horizontal. Do the following and be sure to show your work: a. Find the speed of the mass when it reaches the bottom of the ramp if it starts from rest. (Hint: this can be done with either the kinematics equations or conservation of energy.) b. Once the mass reaches the bottom of the ramp, it...
A ski jumper starts from rest 56.0 m above the ground on a frictionless track and...
A ski jumper starts from rest 56.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 19.0 m above the ground. Neglect air resistance. (a) What is her speed when she leaves the track? (b) What is the maximum altitude she attains after leaving the track? (c) Where does she land relative to the end of the track?
A 2.70-kg block starts from rest at the top of a 30.0° incline and slides a...
A 2.70-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 1.20 s. (a) Find the magnitude of the acceleration of the block. (m/s)^2 ​(b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. ​Magnitude N Direction (d) Find the speed of the block after it has slid 1.90 m.    (m/s^2)
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height...
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height 9 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: Initial gravitational potential energy on Ramp #1: U1G =  J Tries 0/3 Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K...