Question

You are trying to determine the velocity of an asteriod using an elastic collision. You fire...

You are trying to determine the velocity of an asteriod using an elastic collision.

You fire a 1 kg projectile to the right moving with speed 1 m/s toward on 100 kg mass that is moving left with some unknown speed. After an elastic collision, we measure that the launced projectile bounces back toward you with a speed of 40.58 m/s. Find the initial speed of the larger 100 kg mass

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 3.4 kg block moving with a velocity of +4.0 m/s makes an elastic collision with...
A 3.4 kg block moving with a velocity of +4.0 m/s makes an elastic collision with a stationary block of mass 1.9 kg. (a) Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find the velocity of each block after the collision. ______m/s (for the 3.4 kg block) ______m/s (for the 1.9 kg block) (b) Check your answer by calculating the initial and final kinetic energies of each block....
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary...
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary ball and bounces back at a velocity or 4.0 m/s. If the collision is perfectly elastic, calculate (a) the mass of the other ball (b) the velocity of the other ball after the collision (c) the momentum of each ball before and after the collision (d) the kinetic energy of each ball before and after the collision
Two asteroids collide at a 90o angle.  Before the collision, one asteroid, with a mass of 15,000...
Two asteroids collide at a 90o angle.  Before the collision, one asteroid, with a mass of 15,000 kg, is moving with a velocity of 25 m/s to the right.  The other asteroid, with a mass of 25,000 kg, is moving with a velocity of 35 m/s in a downward direction.  They collide so that the first asteroid (the smaller one) hits the left side of the second asteroid, and then continues to move forward, but with only 1/5 of its original speed.  Find the...
a)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on elastic collision (angle...
a)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on elastic collision (angle = 180o) with a 10.0 kg of object that is not moving. What would be the final velocity of the 5.00kg object? b)A 5.00kg moving object with a velocity of 2.00 m/s has a head-on inelastic collision (angle = 180o) with a 10.0 kg of object that is not moving. What would be the final velocity of the 5.00kg object?
Consider an elastic collision in one dimension that involves objects of mass m1=2 kg and m2=11.3...
Consider an elastic collision in one dimension that involves objects of mass m1=2 kg and m2=11.3 kg. The larger mass is initially at rest, and the smaller one has an initial velocity of 16 m/s. Find the final velocities of the two objects after the collision. v1f v2f
A 0.40 kg soccer ball is moving to the right with speed of 25m/s when it...
A 0.40 kg soccer ball is moving to the right with speed of 25m/s when it collides with a 0.60 kg basketball moving to the left with speed of 20 m/s. The basketball bounces off with speed of 12 m/s at an angle of 32.0° relative to its initial path as shown if the figure. At what angle, φ, relative to its original path does the soccer ball move after the collision? What is the speed of the soccer ball...
A glider of mass 0.155 kg is moving to the right on a frictionless, horizontal air...
A glider of mass 0.155 kg is moving to the right on a frictionless, horizontal air track with a speed of 0.760 m/s . It has a head-on collision with a glider 0.294 kg that is moving to the left with a speed of 2.29 m/s . Suppose the collision is elastic. Find the magnitude of the final velocity of the 0.155 kg glider. Find the magnitude of the final velocity of the 0.294 kg glider.
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of...
A cart of mass m1 = 8.8 kg, moving on frictionless surface with a speed of 2.5 m/s makes an elastic collision with a cart of unknown mass m2 moving at an unknown speed toward m1 . After the collision, the 8.8 kg cart recoils with a speed of 9.2 m/s as shown in the figure but now m2 is at rest. Find the mass of m2.
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward...
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward a wall in positive X direction. It collides with the wall, then bounces back to the left with velocity of 1.0 m. The Collison takes 0.015s. What is the total initial momentum? b) What is the total final momentum? c)What is change in momentum? d)What is the impulse? e) What is the average force acting on the wall by the ball during the collision?...
A running back with a mass of 76 kg and a velocity of 5 m/s (toward...
A running back with a mass of 76 kg and a velocity of 5 m/s (toward the right) collides with, and is held by, a 114-kg defensive tackle going in the opposite direction (toward the left). What is the velocity of the tackle before the collision for their velocity afterward to be zero? (Remember, velocity is a vector)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT