Question

1) The position of a particle moving along x direction is given by: x=8t-3t2.What is the...

1) The position of a particle moving along x direction is given by: x=8t-3t2.What is the velocity of the particle at t=2 s and what is the acceleration?

2) A roller coaster car starts from rest and descends h1= 40 m. The car has a mass of 75 kg. What is the speed at 20m while going down the hill?

Homework Answers

Answer #1

1)

       = 8-6t

velocity at time t= 2s

v = 8-6*2 = -4 m/s

aceeleration a=

                 a = -6 m/s2

2) from the conservation of energy

   mgh0 = 1/2 mv2 + mgh

         v =

           =

           =19.79 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position of a particle moving with constant acceleration is given by x(t) = 2t2 +...
The position of a particle moving with constant acceleration is given by x(t) = 2t2 + 8t + 4 where x is in meters and t is in seconds. (a) Calculate the average velocity of this particle between t = 6 seconds and t = 9 seconds.   (b) At what time during this interval is the average velocity equal to the instantaneous velocity?   
A roller coaster car with a mass of 920.5 kg starts from rest at the top...
A roller coaster car with a mass of 920.5 kg starts from rest at the top of a 47.1 m hill labeled h1. The car travels to the bottom of the hill and continues up the next hill that is 12.5 m high and labeled h2. a.) Ignoring friction, what is the speed of the roller coaster car at the bottom of the hill? b.) Ignoring friction, what is the speed of the roller coaster car at the top of...
A particle's position is given by x = 7.00 - 15.00t + 3t2, in which x...
A particle's position is given by x = 7.00 - 15.00t + 3t2, in which x is in meters and t is in seconds. (a) What is its velocity at t = 1 s? (b) Is it moving in the positive or negative direction of x just then? (c) What is its speed just then? (d) Is the speed increasing or decreasing just then? (Try answering the next two questions without further calculation.) (e) Is there ever an instant when...
A particle's position is given by x = 12.0 - 9.00t + 3t2, in which x...
A particle's position is given by x = 12.0 - 9.00t + 3t2, in which x is in meters and t is in seconds. (a) What is its velocity at t = 1 s? (b) Is it moving in the positive or negative direction of x just then? (c) What is its speed just then? (d) Is the speed increasing or decreasing just then? (Try answering the next two questions without further calculation.) (e) Is there ever an instant when...
The position of a particle moving along the x axis is given in meters by x...
The position of a particle moving along the x axis is given in meters by x = 3.0t2 – 1.0t3, where t is in seconds. (a.) At what time does the particle reach its maximum positive x position? (b.) What total length of path does the particle cover in the first 4.0 sec? (c.) What is its displacement during the first 4.0 sec? (d.) What is the particle’s speed at the end of the first 4 sec? (e.) What is...
A particle with a mass m = 2.00 kg is moving along the x axis under...
A particle with a mass m = 2.00 kg is moving along the x axis under the influence of the potential energy function U(x) = (2.00 J/m2)x2 − 32.0 J. If the particle is released from rest at the position x = 6.40 m, determine the following. (The sign is important. Be sure not to round intermediate calculations.) (a) total mechanical energy of the particle at any position: =_____ J. (b) potential energy of the particle at the position x...
The function s(t) describes the position of a particle moving along a coordinate line, where s...
The function s(t) describes the position of a particle moving along a coordinate line, where s is in feet and t is in seconds. s(t) = 3t2 - 6t +3 A) Find the anti-derivative of the velocity function and acceleration function in order to determine the position function. To find the constant after integration use the fact that s(0)=1. B) Find when the particle is speeding up and slowing down. C) Find the total distance from time 0 to time...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position,...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the maximum value, at t = 0, moving to the right. The amplitude of the motion is 2.00 cm and the frequency is 1.50 Hz. (a) Find an expression for the position of the particle as a function of time. Determine (b) the maximum speed of the particle and (c) the earliest time (t > 0) at which the particle has this speed. Find...
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. Next, assume it moves with simple harmonic motion for 5.60 s and x = 0 is its equilibrium position. (Assume that the velocity and acceleration is...
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (c) Find its position (d) Find its velocity at the end of this time interval.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT