Question

A pedestrian waiting for the light to change at an intersection hears a car approaching with...

A pedestrian waiting for the light to change at an intersection hears a car approaching with its horn blaring. The car's horn produces sound with a frequency of 381 Hz, but the pedestrian hears a frequency of 387 Hz .

Part A

How fast is the car moving?

Express your answer to three significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) A pedestrian waiting for the light to change at an intersection hears a car approaching...
1) A pedestrian waiting for the light to change at an intersection hears a car approaching with its horn blaring. The car's horn produces sound with a frequency of 381 Hz, but the pedestrian hears a frequency of 389 Hz. How fast is the car moving? 2) A train moving with a speed of 31.3 m/s sounds a 151 Hz horn. What frequency is heard by an observer standing near the tracks as the train approaches?
1) A car is approaching a reflecting wall. A stationary observer behind the car hears a...
1) A car is approaching a reflecting wall. A stationary observer behind the car hears a sound of frequency 790 Hz from the car horn and a sound of frequency 873 Hz from the wall. (a) How fast is the car traveling? .......... km/h (b) What is the frequency of the car horn? ........... Hz (c) What frequency does the car driver hear reflected from the wall? ............ Hz ------------------------------------------------------------------------------------------------ 2) A bat flying toward an obstacle at 10 m/s...
A train is moving past a crossing where cars are waiting for it to pass. While...
A train is moving past a crossing where cars are waiting for it to pass. While waiting, the driver of the lead car becomes sleepy and rests his head on the steering wheel, unintentionally activating the car's horn. A passenger in the back of the train hears the horn's sound at a frequency of 435 Hz and a passenger in the front hears it at 407 Hz. Find the train's speed and the horn's frequency. Take the speed of sound...
A train is moving past a crossing where cars are waiting for it to pass. While...
A train is moving past a crossing where cars are waiting for it to pass. While waiting, the driver of the lead car becomes sleepy and rests his head on the steering wheel, unintentionally activating the car's horn. A passenger in the back of the train hears the horn's sound at a frequency of 433 Hz and a passenger in the front hears it at 404 Hz. Find the train's speed and the horn's frequency, assuming the sound travels along...
Two cars moving with the same speed are approaching each other from opposite directions. The driver...
Two cars moving with the same speed are approaching each other from opposite directions. The driver of one of the car blows his horn, which emits sound with the frequency of 400 Hz. The driver in the other car hears the frequency of 450 Hz. What is the speed of the cars if the speed of sound is 340 m/s?
A police officer with an exceptionally good ear hears an approaching motorcycle. The engine sound he...
A police officer with an exceptionally good ear hears an approaching motorcycle. The engine sound he hears as the bike approaches is 195 Hz. (a) Is the actual sound the bike makes higher or lower in pitch? (b) What causes this frequency shift? Indicate with a diagram. c) Then after the bike passes, he hears 147 Hz as the perceived pitch. If it was a nice sunny 20 °C day, how fast was the bike moving?
the train is moving past a crossing where cars are waiting for it to pass. while...
the train is moving past a crossing where cars are waiting for it to pass. while waiting, the driver of the lead car becomes sleepy and rests his head on the steering wheel, unintentionally activating the cars horn. a passenger in the back of the train hears the horns sound at a frequency of 434 Hz and a passenger in the front hears it at 409 Hz. find the trains speed and the horns frequency, assuming the sound travels along...
A car horn produces a sound with a frequency of 408 Hz. The horn is sounded...
A car horn produces a sound with a frequency of 408 Hz. The horn is sounded while the car is moving down the street in the same direction as a bicycle which is ahead of the car. The bicyclist is moving down the street with 1/5.46 the speed of the car and hears a frequency of 436 Hertz. Determine the speed of the car (in m/s). The speed of the sound is 345 m/s.
A pedestrian standing on the sidewalk heard a frequency of 845 Hz when an ambulance is...
A pedestrian standing on the sidewalk heard a frequency of 845 Hz when an ambulance is traveling away from him with a speed of 45.0 m/s. Speed of sound in air = 343 m/s A) what is the frequency of the ambulance siren? Express your answer using three significant figures. B) Then the ambulance stopped for a few seconds while sounding the siren. A driver in a car that is coming towards the ambulance heard a frequency of 995 Hz....
A bicyclist is pedaling down a road at 8 m/sec. A car approaches him from behind....
A bicyclist is pedaling down a road at 8 m/sec. A car approaches him from behind. When the car is preparing to pass he sounds his horn. At first the bicyclist hears a frequency of 520 HZ but the sound appears to drop in frequency to 470 HZ after the car passes. a) How fast is the car moving? (v sound = 340 m/sec)(answer to nearest whole number) 10 b) what is the actual frequency of the horn (don't assume...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT