Question

Consider the collision of two identical particles. The masses of the two particles are therefore equal...

Consider the collision of two identical particles. The masses of the two particles are therefore equal m1=m2. The initial velocity of particle 1 is v1 and particle two is initially at rest. After an elastic head on collision, the final velocity of particle two is is v'2 and is given by...

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
5. [1pt] Consider a perfectly elastic collision between two objects of equal mass. Object 1 is...
5. [1pt] Consider a perfectly elastic collision between two objects of equal mass. Object 1 is initially moving with a velocity v = 3.04 m/s while object 2 is at rest. What are the final velocities after the collision? Enter the final velocity of object 1 first. Answer 1 of 2: Answer 2 of 2: 6. [1pt] If the objects have masses m1 = 1.69 kg and m2 = 4.04 kg, what are the final velocities of the objects after...
Two particles collide in a straight line, one of which was initially moving with velocity v1...
Two particles collide in a straight line, one of which was initially moving with velocity v1 and the other initially at rest. Assume particle 2 is at rest. Write a Python program that will ask the user to enter the masses of the two particles and particle 1’s initial velocity (v1). The program should calculate the scattering angle and velocity for particle 2 as a function of the scattering angle and resulting velocity of particle 1.
Consider an elastic collision in one dimension that involves objects of mass m1=2 kg and m2=11.3...
Consider an elastic collision in one dimension that involves objects of mass m1=2 kg and m2=11.3 kg. The larger mass is initially at rest, and the smaller one has an initial velocity of 16 m/s. Find the final velocities of the two objects after the collision. v1f v2f
Suppose we are looking at a collision of two masses in 1D. The masses are m1...
Suppose we are looking at a collision of two masses in 1D. The masses are m1 and m2, their initial velocities are V10 and V20 and their final velocities are v1 and v2. Momentum is conserved in this collision which means that it should be possible to express v2 in terms of v1 and other constants. a) determine the final speeds of m1 and m2 in terms of v1 and other constants b) determine the initial and final kinetic energies...
Write a Python program that will ask the user to enter the masses of two particles...
Write a Python program that will ask the user to enter the masses of two particles (particle one and particle two) and particle 1’s initial velocity (v1). Assume particle two is at rest. The program should calculate the scattering angle and velocity for particle 2 as a function of the scattering angle and resulting velocity of particle 1
Two particles, of mass m and mass nm, undergo a head-on, fully elastic collision. (Here n...
Two particles, of mass m and mass nm, undergo a head-on, fully elastic collision. (Here n is just a unitless number.) Before colliding the particles approach one another with equal speed v. Snapshots of the particles before, during, and after the collision are shown above. After the collision the first particle moves away with speed 2.95v in the exact opposite direction, and the velocity of the second particle is unknown. What is the value of n? Before Collision (m)-><-(nm) Collision...
Consider a collision between two identical masses of 0.051 kg on a frictionless surface. Initially one...
Consider a collision between two identical masses of 0.051 kg on a frictionless surface. Initially one of them is at rest and the other approaches with a velocity of 2.59 m/s.When they collide, they "stick" together and leave the collision as one combined object. (a) Find the velocity of the combined system as it leaves the collision. (b) Is the kinetic energy in this collision conserved?
Two masses collide in an elastic collision, with the following initial values: m1 = 2 kg...
Two masses collide in an elastic collision, with the following initial values: m1 = 2 kg m2 = 3 kg v01 = 5 m/s v02 = -4 m/s Use the conservation rules, and algebra, what is the final velocity of mass 1, vf1 in m/s?
Two particles with masses 4m and 3m are moving toward each other along the x axis...
Two particles with masses 4m and 3m are moving toward each other along the x axis with the same initial speeds vi. The particle with mass 4m is traveling to the left, and particle 3m is traveling to the right. They undergo a head-on elastic collision and each rebounds along the same line as it approached. Find the final speeds of the particles. particle 4m                                    
1. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially...
1. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially at rest, undergo an elastic collision. Calculate their final velocities after the collision. 2. A mass ma=2m, with an initial velocity of 4 m/s, and a mass mb=m, initially at rest, undergo a perfectly inelastic collision. Calculate the final velocity after the collision and the kinetic-energy loss. 3. A moving mass,m1, collides perfectly inelastically with a stationary mass,m2. Show that the total kinetic energy...