Question

The half-life of a radioactive isotope represents the average time it would take half of a...

The half-life of a radioactive isotope represents the average time it would take half of a collection of this type of nucleus to decay. For example, you start with a sample of 1000 Oxygen-15 (15O) nuclei, which has a half-life of 122 seconds. After 122 seconds, half of the 15O nuclei will have decayed into Nitrogen-15 (15N) nuclei. After another 122s, half of the remaining Oxygen nuclei will have also decayed, and so on. Suppose you start with 4.00×103 15O nuclei and zero 15N nuclei. How many 15O nuclei remain after 122 s has passed?

How many 15N nuclei are there after 122 s has passed?

How many 15O nuclei remain after 244 s has passed?

How many 15N nuclei are there after 244 s has passed?

Suppose you start with 7.86×103 Carbon-14(14C) nuclei. 14C has a half-life of 5730 years and decays into Nitrogen-14(14N) via a beta decay. How much time has passed if you are left with 3.93×103 14C nuclei? (The units for years is 'yr'.)

How much time has passed if you are left with 1.96×103 14C nuclei?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q1. Carbon-14 – or 14C – is a radioactive isotope of carbon with a half-life of...
Q1. Carbon-14 – or 14C – is a radioactive isotope of carbon with a half-life of 5,730 years. It decays into nitrogen-14 – or 14N – , which is a stable isotope of nitrogen. (a) Which of the three nuclear decay processes describes the decay? Explain. (Hint: You can get the atomic number of carbon and nitrogen from a periodic table.) (b) Write down the equation for the decay. (c) What is the decay constant for 14C? All isotopes of...
1. The half-life single radioactive nuclei is 10 years. When will this nuclei decay? 2. The...
1. The half-life single radioactive nuclei is 10 years. When will this nuclei decay? 2. The half-life of radioactive nuclei is 20 years. How much time must pass before 50% of the nuclei have decayed? _____75 years?
A sample of radioactive nuclei initially contains 6.00 ×1010×1010 radon atoms. The half-life of this type...
A sample of radioactive nuclei initially contains 6.00 ×1010×1010 radon atoms. The half-life of this type of nucleus is 500 days. How many nuclei have decayed after 167 days? A sample of radioactive nuclei initially contains 6.00  radon atoms. The half-life of this type of nucleus is 500 days. How many nuclei have decayed after 167 days? 2.00×1010 4.00×1010 1.24×1010 4.76×1010
The radioactive isotope 234Pa has a half-life of 6.70 h. A sample containing this isotope has...
The radioactive isotope 234Pa has a half-life of 6.70 h. A sample containing this isotope has an initial activity (t = 0) of 35.0µCi. Calculate the number of nuclei that decay in the time interval between t1 = 7.0 h and t2 = 14.0 h. ___________ Nuclei
The radioactive isotope (95 Nb) has a half-life of 35 days. A sample containing this isotope...
The radioactive isotope (95 Nb) has a half-life of 35 days. A sample containing this isotope has an initial activity at (t = 0) of 4.50 x 10 ^8 Bq. Calculate the number of nuclei that will decay in the time interval between t1 = 30.0 hours and t2= 55.0 hours. Ans in nuclei and need it asap
A certain radioactive element has a half-life of 6.93 s. If there are initially 1.00 x...
A certain radioactive element has a half-life of 6.93 s. If there are initially 1.00 x 103 nuclei of that element, how many are left after 7.00 s? Give your answer to 2 significant figures.
The radioactive isotope 198Au has a half-life of 64.8 hours. A sample containing this isotope has...
The radioactive isotope 198Au has a half-life of 64.8 hours. A sample containing this isotope has an initial activity at (t=0) of 1.50e-12 Bq. Calculate the number of nuclei that will decay in the time interval between t1=10 hours and t2=20 hours Answer is 4.60e16 but I'm not sure how. Thanks and please show work
The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has...
The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has an initial activity of 40.0 μCi. Calculate the number of nuclei that will decay in the time interval from 10 hrs to 12 hrs.[10 marks]
A sample of radioactive nuclei initially contains 9.00 ×1010 radon atoms. The half-life of this type...
A sample of radioactive nuclei initially contains 9.00 ×1010 radon atoms. The half-life of this type of nucleus is 450 days. How many nuclei have decayed after 150 days? OPTIONS: 7.14×1010 6.00×1010 3.00×1010 1.86×1010
The radioactive isotope 198Au has a half-life of 64.8 hr. A sample containing this isotope has...
The radioactive isotope 198Au has a half-life of 64.8 hr. A sample containing this isotope has an initial activity (t = 0) of 1.5x 10^12 Bq. Calculate the number of nuclei that decay in the time interval between t1 = 10 hr and t2 = 12 hr. Please show and explain work, and do not use calculus to solve it.