Question

The figure shows a resistor of resistance R = 6.27 Ω connected to an ideal battery...

The figure shows a resistor of resistance R = 6.27 Ω connected to an ideal battery of emf  = 13.9 V by means of two copper wires. Each wire has length 21.9 cm and radius 2.90 mm. In dealing with such circuits in this chapter, we generally neglect the potential differences along the wires and the transfer of energy to thermal energy in them. Check the validity of this neglect for the circuit of the figure below. What is the potential difference across (a) the resistor and (b) each of the two sections of wire? At what rate is energy lost to thermal energy in (c) the resistor and (d) each section of wire?

Homework Answers

Answer #1

The answer for above problem is explained below.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Series/Parallel Circuits: When unequal resistors are connected in series across an ideal battery, the same power...
Series/Parallel Circuits: When unequal resistors are connected in series across an ideal battery, the same power is dissipated in each one. the potential difference across each is the same. the equivalent resistance of the circuit is equal to the average of all the resistances. the current flowing in each is the same. the equivalent resistance of the circuit is less than that of the smallest resistor.
A battery of ε = 2.90 V and internal resistance R = 0.500 Ω is driving...
A battery of ε = 2.90 V and internal resistance R = 0.500 Ω is driving a motor. The motor is lifting a 2.0 N mass at constant speed v = 0.50 m/s. Assuming no energy losses, find the current i in the circuit. A.Enter the lower current. B. Enter the higher current. C. Find the potential difference V across the terminals of the motor for the lower current. D. Find the potential difference V across the terminals of the...
Chapter 18, Problem 1 A 47- resistor and a 29- resistor are connected in series across...
Chapter 18, Problem 1 A 47- resistor and a 29- resistor are connected in series across a 24-V battery. What is the voltage across (a) the 47- resistor and (b) the 29- resistor? Chapter 18, Problem 2 The current in a 63- resistor is 0.077 A. This resistor is in series with a 42- resistor, and the series combination is connected across a battery. What is the battery voltage? Chapter 18, Problem 3 What resistance must be placed in parallel...
1) 2 point charges are separated by a distance of 8 cm. The left charge is...
1) 2 point charges are separated by a distance of 8 cm. The left charge is 48 mC and the right charge is -16mC. Using a full sheet of paper: draw the 2 charges separated by 8cm, centered in the sheet. (if you are missing a ruler estimate 8cm as ⅓ a paper sheet length). [6] a) Draw field lines to indicate the electric fields for this distribution. [4] b) Draw 3 equipotential surfaces, 1 each, that pass: -Through the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT