Question

The escape speed from an object is v2 = 2GM/R, where M is the mass of...

The escape speed from an object is v2 = 2GM/R, where M is the mass of the object, R is the object's starting radius, and G is the gravitational constant 6.67 × 10-11 m3 kg-1 s-2. What is the approximate escape speed, in km/s, from the Solar System starting from an orbit at 0.6 AU? In this case, the mass of the Sun, 2.2e+30 kg, can be used as the mass of the Solar system.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the escape speed for an object to leave the surface of Jupiter? How many...
What is the escape speed for an object to leave the surface of Jupiter? How many Earth days are in a year for Jupiter? (Note: Jupiter’s mass is 1.898 x 1027 kg, its radius is 43,441 miles and it is located 483.8 million miles from the Sun) (Additional note: Earth is located 92.96 million miles from the Sun)
An object with a mass of 500 kg is orbiting planet X with a speed of...
An object with a mass of 500 kg is orbiting planet X with a speed of 1540 m/s. Planet X has a mass of 1.35 x 1023 kg and a radius of 2.58 x 106 m. Calculate the height of the object above the surface of planet X. G = 6.67 x 10-11 Nm2/kg2. express your answer with the appropriate units. What is the gravitational force experienced by the object due to planet X. G = 6.67 x 10-11 Nm2/kg2....
Assume the earth is a uniform sphere of mass M and radius R. As strange as...
Assume the earth is a uniform sphere of mass M and radius R. As strange as it may sound, if one can dig a long tunnel from one side of the Earth straight through the center and exit the other end, any object falling into the tunnel will appear at the other end (i.e. the opposite side of the Earth) in just 2530 s (42.2 min). Call that time t. Let t be a function of G, M, and R,...
You observe a star orbiting the massive object at the galactic center at a speed of...
You observe a star orbiting the massive object at the galactic center at a speed of 1300 km/s in a circular orbit with a radius of 19 light-days. Calculate the mass of the object the star is orbiting. Enter in solar masses. Stars in the outskirts of a globular cluster are about 43 light years from the cluster's center, and orbit at speeds of about 9 km/s. How massive is this cluster? (answer in solar masses) A star in the...
The mass of the Sun M = 2.0×1030 kg, and G = 6.67×10-11 Nm2 /kg2 a)....
The mass of the Sun M = 2.0×1030 kg, and G = 6.67×10-11 Nm2 /kg2 a). A spaceship of mass m = 7.5×104 kg is on a circular orbit of radius r1 = 2.5×1011 m around the Sun. The captain of that spaceship decides to increase the radius of his orbit to r2 = 4.0×1011 m. What is the minimum amount of energy he has to expand using his engines to move to this higher orbit? [Assume that the ship...
(a) What is the escape speed on a spherical asteroid whose radius is 633 km and...
(a) What is the escape speed on a spherical asteroid whose radius is 633 km and whose gravitational acceleration at the surface is 0.707 m/s2? (b) How far from the surface will a particle go if it leaves the asteroid's surface with a radial speed of 601 m/s? (c) With what speed will an object hit the asteroid if it is dropped from 868.7 km above the surface?
(a) What is the escape speed on a spherical asteroid whose radius is 590 km and...
(a) What is the escape speed on a spherical asteroid whose radius is 590 km and whose gravitational acceleration at the surface is 2.7 m/s2? m/s (b) How far from the surface will a particle go if it leaves the asteroid's surface with a radial speed of 1000 m/s? m (c) With what speed will an object hit the asteroid if it is dropped from 1000 km above the surface? m/s
P1:Suppose an object is launched from Earth with 0.52 times the escape speed. How many multiples...
P1:Suppose an object is launched from Earth with 0.52 times the escape speed. How many multiples of Earth's radius (RE = 6.37 x 106 m) in radial distance will the object reach before falling back toward Earth? The distances are measured relative to Earth's center, so a ratio of 1.00 would correspond to an object on Earth's surface. For this problem, neglect Earth's rotation and the effect of its atmosphere. For reference, Earth's mass is 5.972 x 1024 kg. Your...
a) Your cosmic journey brought you into the vicinity of a neutron star. In fact, you...
a) Your cosmic journey brought you into the vicinity of a neutron star. In fact, you are orbiting this neutron star at an orbital distance of 2,184 kilometers. The neutron star has mass of 1.6 solar masses (MSun = 1.99 × 1030 kg). What is the local acceleration due to gravity that you experience in your spaceship? Express your answer in m/s2; use scientific notation and round the coefficient to two decimals. b) What is the escape velocity from Earth’s...
We know that most of the mass (>99%) of the solar system is in the Sun....
We know that most of the mass (>99%) of the solar system is in the Sun. Is this consistent with the masses you calculated in the first table, and the solar system rotation curve? Explain your answer. Planet Distance from Sun (AU) Orbital Velocity (km/s) Mass inside orbit = v2r/887 (solar masses) Mercury 0.4 47.4 1.013195 Venus 0.7 35.0 0.966741 Earth 1.0 29.8 1.001172 Mars 1.5 24.1 0.982204 Jupiter 5.2 13.1 1.006056 Saturn 9.6 9.7 1.018335 Uranus 19.2 6.8 1.000910...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT