Question

Two pucks, one with mass m and one with mass 2 m, slide up a frictionless...

Two pucks, one with mass m and one with mass 2 m, slide up a frictionless ramp inclined at an angle θ. Each puck's speed at the bottom of the ramp is v 0. If the lighter puck stops a height h above the bottom of the ramp, what height does the heavier puck stop at?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits...
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits on a steep ramp. The other box is heavier and rests on a ramp that is less steep. The boxes are released from rest at A and allowed to slide down the ramps. The two boxes have masses of 8 and 32 kg. If A and B are 4.0 and 1.5 m, respectively, above the ground, determine the speed of (a) the lighter box...
Two ice pucks (one orange and one blue) of equal mass are involved in a perfectly...
Two ice pucks (one orange and one blue) of equal mass are involved in a perfectly elastic glancing collision as shown in the figures below. The orange puck is initially moving to the right at voi = 8.00 m/s, strikes the initially stationary blue puck, and moves off in a direction that makes an angle of θ = 39.0° with the horizontal axis while the blue puck makes an angle of ϕ = 51.0° with this axis as in the...
Two ice pucks (one orange and one blue) of equal mass are involved in a perfectly...
Two ice pucks (one orange and one blue) of equal mass are involved in a perfectly elastic glancing collision as shown in the figures below. The orange puck is initially moving to the right at voi = 8.00 m/s, strikes the initially stationary blue puck, and moves off in a direction that makes an angle of θ = 39.0° with the horizontal axis while the blue puck makes an angle of ϕ = 51.0° with this axis as in the...
Two hockey pucks of the same mass 0.5kg elastically collide on a frictionless air hockey table....
Two hockey pucks of the same mass 0.5kg elastically collide on a frictionless air hockey table. Incoming puck A has a velocity of 6m/s and scatters at an angle of 50°. Puck B is initially at rest and scatters 40° the other way. Solve for the speed of Puck A after the collision.
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits...
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits on a steep ramp. The other box is heavier and rests on a ramp that is less steep. The boxes are released from rest at A and allowed to slide down the ramps. The two boxes have masses of 14 and 45 kg. If A and B are hA = 4.0 and hB = 1.7 m, respectively, above the ground, determine the speed of...
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits...
The drawing shows two boxes resting on frictionless ramps. One box is relatively light and sits on a steep ramp. The other box is heavier and rests on a ramp that is less steep. The boxes are released from rest at A and allowed to slide down the ramps. The two boxes have masses of 9 and 43 kg. If A and B are 4.0 and 0.5 m, respectively, above the ground, determine the speed of (a) the lighter box...
Notice that the final answer for the acceleration depends only on g and the angle θ,...
Notice that the final answer for the acceleration depends only on g and the angle θ, not the mass. Equation (2), which gives the normal force, isn't useful here, but is essential when friction plays a role. QUESTION If the car is parked on a more gentle slope, how will the time required for it to slide to the bottom of the hill be affected? The time would be longer.The time would be shorter.    The time would be the same. PRACTICE...
There is a variable amount of friction between a block of mass m and a ramp...
There is a variable amount of friction between a block of mass m and a ramp at an angle θ above the horizontal. The kinetic and static coefficients of friction are equal but vary as µ=Ax, where x is measured along the ramp and x = 0 is the bottom of the ramp. The block is sent up the ramp with an initial speed v0, and comes to a stop somewhere on the ramp. In the following parts, take your...
A powered winch pulls a 82.5-kg box up a frictionless ramp of height h = 4.65...
A powered winch pulls a 82.5-kg box up a frictionless ramp of height h = 4.65 m by a cable as shown in the figure below. The ramp rises at an angle θ = 25.0° above the horizontal. The box, starting from rest at the bottom, steadily accelerates at 2.05 m/s2 to a final speed of 6.72 m/s at the top. (a) the average power P delivered by the winch (via the cable's tension) to the box while being pulled...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT