Question

The net charge difference across the membrane, just like the charge difference across the plates of...

The net charge difference across the membrane, just like the charge difference across the plates of a capacitor, is what leads to the voltage across the membrane.

How much excess charge (in picocoulombs, where 1 pc = 1x10-12 C) must lie on either side of the membrane of an axon of length 2 cm to provide this potential difference (0.07 V) across the membrane? You may consider that a net positive charge with this value lies just outside the axon cell wall, and a negative charge with this value lies just inside cell wall, like the equal and opposite charges on capacitor plates.

Previous Info:

An average cylindrical axon has a cell wall that is d = 5 × 10 − 9  m thick and has a radius r = 5 × 10 − 6  m. The dielectric constant of the lipid bilayer κ = 7. Find the capacitance then of the axon cell wall membrane for an axon of length 4 cm. You may consider the cell membrane as having the geometry of a parallel plate capacitor by unrolling the cylinder, which yields parallel capacitor plates with an area A = 2 π r l where l = 1.0  cm is the length of the axon. Give your answer to the nearest nanofarad where 1 nanofarad = 1x10-9 F.

Homework Answers

Answer #1

Here, I have used simple concepts regarding potential difference, charge, capacitance and then using necessary formulae regarding them, I have calculated the answers.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The net charge difference across the membrane, just like the charge difference across the plates of...
The net charge difference across the membrane, just like the charge difference across the plates of a capacitor, is what leads to the voltage across the membrane. How much excess charge (in picocoulombs, where 1 pc = 1x10-12 C) must lie on either side of the membrane of an axon of length 1 cm to provide this potential difference (0.07 V) across the membrane? You may consider that a net positive charge with this value lies just outside the axon...
At a neuron's resting potential, the inside of the axon lies about 0.07 V below the...
At a neuron's resting potential, the inside of the axon lies about 0.07 V below the outside of the axon. Using the formula for the capacitance you found in the previous problem, how much electric energy to the nearest picojoule (1 pJ = 1x10-12 J) is stored a 9-cm-long axon at this resting potential? Note the capacitance may differ for different axon lengths. This electrical energy stored in the membrane due to the potential difference across the membrane is used...
Many cells in the body have a cell membrane whose inner and outer surfaces carry opposite...
Many cells in the body have a cell membrane whose inner and outer surfaces carry opposite charges, just like the plates of a parallel-plate capacitor. Suppose a typical cell membrane has a thickness of 8.5×10−9 m , and its inner and outer surfaces carry charge densities of -6.3×10−4 C/m2 and +6.3×10−4 C/m2 , respectively. In addition, assume that the material in the cell membrane has a dielectric constant of 5.5. 1. Find the direction of the electric field within the...
Cell Membranes and Dielectrics Many cells in the body have a cell membrane whose inner and...
Cell Membranes and Dielectrics Many cells in the body have a cell membrane whose inner and outer surfaces carry opposite charges, just like the plates of a parallel-plate capacitor. Suppose a typical cell membrane has a thickness of 8.4×10−9 m , and its inner and outer surfaces carry charge densities of -5.3×10−4 C/m2 and +5.3×10−4 C/m2 , respectively. In addition, assume that the material in the cell membrane has a dielectric constant of 5.4. Part A Find the direction of...
1. What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from...
1. What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from rest to a speed of 1.1×106 m/s ? 2. Two 2.00 cm × 2.00 cm plates that form a parallel-plate capacitor are charged to ± 0.708 nC . a) What is the electric field strength inside the capacitor if the spacing between the plates is 1.30 mm ? b)What is potential difference across the capacitor if the spacing between the plates is 1.30 mm...
A typical cell has a membrane potential of -70 mV, meaning that the potential inside the...
A typical cell has a membrane potential of -70 mV, meaning that the potential inside the cell is 70 mV less than the potential outside due to a layer of negative charge on the inner surface of the cell wall and a layer of positive charge on the outer surface. This effectively makes the cell wall a charged capacitor. Because a cell's diameter is much larger than the wall thickness, it is reasonable to ignore the curvature of the cell...
Some cell walls in the human body have a layer of negative charge on the inside...
Some cell walls in the human body have a layer of negative charge on the inside surface and a layer of positive charge of equal magnitude on the outside surface. Suppose that the charge density on either surface is ± 0.50×10−3 C/m2, the cell wall is 5.1 nm thick, and the cell-wall material is air. Notes about Problem 18.77 and a Hint for Part D: The cell wall/membrane creates a separation of charge between the inside and outside of a...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What is the charge density (ρ) of the sphere? (b) Calculate the electric field at a point r = 0.5cm from the center of the sphere. (c) What is the electric field on the surface of the sphere? 11. Two capacitors C1 and C2 are in series with a voltage V across the series combination. Show that the voltages V1 and V2 across C1 and...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary rivals? How will the acquisition of Reebok by Adidas impact the structure of the athletic shoe industry? Is this likely to be favorable or unfavorable for New Balance? 2- What issues does New Balance management need to address? 3-What recommendations would you make to New Balance Management? What does New Balance need to do to continue to be successful? Should management continue to invest...