Question

When two lenses are used in combination, the first one forms an image that then serves...

When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. A 2.00 cm -tall object is 50.0 cm to the left of a converging lens of focal length 40.0 cm . A second converging lens, this one having a focal length of 60.0 cm , is located 300 cm to the right of the first lens along the same optic axis.

A: Find the location and height of the image (call it I1) formed by the lens with a focal length of 40.0 cm . Enter your answer as two numbers separated with a comma.

B: I1 is now the object for the second lens. Find the location and height of the image produced by the second lens. This is the final image produced by the combination of lenses. Enter your answer as two numbers separated with a comma.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When two lenses are used in combination, the first one forms an image that then serves...
When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. A 1.60-cmcm-tall object is 56.0 cm to the left of a converging lens of focal length 40.0 cm. A second converging lens, this one having a focal length of 60.0 cm, is located 300 cm to...
When two lenses are used in combination, the first one forms an image that then serves...
When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. A 1.60- cm -tall object is 57.0 cm to the left of a converging lens of focal length 40.0 cm . A second converging lens, this one having a focal length of 60.0 cm , is...
When two lenses are used in combination, the first one forms an image that then serves...
When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. A 1.50-cm-tall object is 58.0 cm to the left of a converging lens of focal length 40.0 cm. A second converging lens, this one having a focal length of 60.0 cm, is located 300 cm to...
When two lenses are used in combination, the first one forms an image that then serves...
When two lenses are used in combination, the first one forms an image that then serves as the object for the second lens. The magnification of the combination is the ratio of the height of the final image to the height of the object. A 1.20 cm -tall object is 50.0 cm to the left of a lens of focal length of magnitude 40.0 cm . A second lens, this one having a focal length of magnitude 60.0 cm ,...
Two converging lenses, the first with focal length 10.0 cm and the second with focal length...
Two converging lenses, the first with focal length 10.0 cm and the second with focal length 20.0 cm, are separated by 40.0 cm. An object, 3.00 cm in height, is placed 30.0 cm in front of the first lens. What is the height of the final image?
Two converging lenses, the first with focal length f1 = 25 cm and the second with...
Two converging lenses, the first with focal length f1 = 25 cm and the second with focal length f2 = 15 cm are separated by a distance of ` = 65 cm. An object is place at a distance of do1 = 45 cm to the left of the first lens. (a) What will be the distance from the second lens that the final image is produced? Is this image to the left or right of the second lens? Justify...
Two concave lenses, each with f = -11 cm, are separated by 6.5 cm. An object...
Two concave lenses, each with f = -11 cm, are separated by 6.5 cm. An object is placed 20 cm in front of one of the lenses. A.Find the location of the final image produced by this lens combination. Find the location of the final image produced by this lens combination.( in front of the lens closest to the object, beyond the lens farthest from the object, between the two lenses B. Find the magnification of the final image produced...
An optical system consists of two lenses separated by 35 cm – first is converging with...
An optical system consists of two lenses separated by 35 cm – first is converging with focal length 10 cm and the second is diverging with focal length 15 cm. An object is 20 cm to the left of the first lens. Find the position of the final image using both a ray diagram and the thin-lens equation. Is the image real or virtual? Erect or inverted? What is the overall magnification of the image?
Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -11.7...
Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -11.7 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Determine the position of the final image formed. Express your answer with the appropriate units. di =    Determine the magnification of the final image formed. m=   
Two lenses, one converging with focal length 21.0 cm and one diverging with focal length −...
Two lenses, one converging with focal length 21.0 cm and one diverging with focal length − 12.0 cm , are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Part A Find the final image distance from second lens. Follow the sign conventions. Express your answer to two significant figures and Part B Determine the magnification of the final image formed. Follow the sign conventions. Express your answer using two significant figures include...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT