Question

A standing wave pattern is created on a string with mass density μ = 3 ×...

A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed.

1) What is the wavelength of the wave?

2) What is the speed of the wave?

3) What is the tension in the string?

4) What is the mass hanging on the end of the string?

5) Keeping the frequency fixed at f = 63 Hz, what is the maximum mass that can be used to still create a coherent standing wave pattern?

Homework Answers

Answer #1

1)

Initially the 3rd harmonic wave pattern is formed.

And L =0.68m

So 3λ/2 = 0.68 m

λ = (2)(0.68m)/3 = ​​​​​​0.453 m

λ = 0.453 m

2)

Given data

f=63Hz

​​​​speed of the wave is v = fλ

So v =(63 Hz) (0.453 m) = 28.56 m/s

V=28.56 m/s

3)

We know that

V =(T/μ) 1/2

T = V2μ = (28.56)(28.56)(3 × 10-4 kg/m)

T= 0.2447 N

4)

We know that

T =mg

m = T/g = (0.2447N) /(9.8 m/s2​​​​​​) = 0.025 kg = 25 g

Mass m= 25 g

5)

For maximum mass

λ/2 = 0.68 m

λ = 1.36 m

V=fλ = (63)(1.36) = 85.68 m/s

V= 85.68 m/s

T =V2μ = (85.68)(85.68)(3 × 10-4) = 2.2023 N

T=Mg

M= T/g = (2.2023/9.8) = 0.2247 kg

M =224.7 g

Maximum mass is = 224.7 g

If you find this helpful please upvote

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
A standing wave is set up in a L=2.00m long string fixed at both ends. The...
A standing wave is set up in a L=2.00m long string fixed at both ends. The string vibrates in its 5th harmonic when driven by a frequency f=120Hz source. The mass of the string is m=3.5grams. Recall that 1kg = 1000grams. A. Find the linear mass density of the string B. What is the wavelength of the standing wave C. What is the wave speed D. What is the tension in the string E. what is the first harmonic frequency...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
The speed of a wave in a string is given by v = sqrt(FT/μ), where FT...
The speed of a wave in a string is given by v = sqrt(FT/μ), where FT is the tension in the string and μ = mass/length of the string. A 2.00 m long string has a mass of 16.5 g. A 769 g mass is attached to the string and hung over a pulley . The end of the string is then vibrated at a frequency of 129 Hz. Find the wavelength for the wave generated. Give your answer in...
1) Selena measures the total distance between the nodes on either end of a standing wave...
1) Selena measures the total distance between the nodes on either end of a standing wave pattern to be 0.75 m, and she records that there were three antinodes between the endpoints. When she calculates half of the wavelength of the pattern, using these measurements, what is the result? Express your answer in meters. 4) Jerome has added mass to the holder and created the standing wave pattern. He observes that the string appears to have nodes where it meets...
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string...
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string has a mass of 45 g and under a tension of 50 N. a. What is the frequency of vibration? b. At the same frequency, you wish to see four loops, what tension you need to use. Part 2. a. Determine the shortest length of pipe, open at both ends, which will resonate at 256 Hz (so the first harmonics is 256Hz). The speed...
A guitar produces sound at specific frequencies generated by standing waves that are created by the...
A guitar produces sound at specific frequencies generated by standing waves that are created by the plucking of the string under tension. Calculate the frequency of the first harmonic (in Hz) of the sound generated from plucking a string with a mass per unit length of 6 g/m, under tension of 133 N and a length between supports of 0.7 m.
A distance of 5.60 cm is measured between two adjacent nodes of a standing wave on...
A distance of 5.60 cm is measured between two adjacent nodes of a standing wave on a 28.0 cm-long string. HINT (a) In which harmonic number n is the string vibrating? (b) Find the frequency (in Hz) of this harmonic if the string has a mass of 1.25 ✕ 10−2 kg and a tension of 885 N. Hz
A guitar string with a linear density of 2.0 g/m is stretched between supports that are...
A guitar string with a linear density of 2.0 g/m is stretched between supports that are 60 cm apart. The string is observed to form a standing wave with three antinodes when driven at a frequency of 420 Hz. What are (a) the frequency of the fifth harmonic of this string and (b) the tension in the string?
A student uses a 2.00-m-long steel string with a diameter of 0.90 mm for a standing...
A student uses a 2.00-m-long steel string with a diameter of 0.90 mm for a standing wave experiment. The tension on the string is tweaked so that the second harmonic of this string vibrates at 22.0 Hz . (ρsteel=7.8⋅103 kg/m3) Calculate the tension the string is under. Calculate the first harmonic frequency for this sting. If you wanted to increase the first harmonic frequency by 44 % , what would be the tension in the string?