Question

The net entropy changes when a 33 g -ice cube initially at 0 ?C melts in...

The net entropy changes when a 33 g -ice cube initially at 0 ?C melts in a room.

a) What is the net entropy change, if room temperature T1= 19 ?C .

Express your answer to two significant figures and include the appropriate units.

b)

What is the net entropy change, if room temperature T2= 25 ?C .

Express your answer to two significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cube of ice is taken from the freezer at -9.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -9.5 ∘C and placed in a 95-g aluminum calorimeter filled with 320 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 15.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. What was the...
A cube of ice is taken from the freezer at -6.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -6.5 ∘C and placed in a 95-g aluminum calorimeter filled with 300 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 16.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. Part A What...
Part A) A 65 g ice cube can slide without friction up and down a 30∘...
Part A) A 65 g ice cube can slide without friction up and down a 30∘ slope. The ice cube is pressed against a spring at the bottom of the slope, compressing the spring 10 cm. The spring constant is 22 N/m . When the ice cube is released, what total distance will it travel up the slope before reversing direction? Express your answer to two significant figures and include the appropriate units . Part B) The ice cube is...
We drop a 22.8 g ice cube at 0∘C into 1000 g of water at 20∘C....
We drop a 22.8 g ice cube at 0∘C into 1000 g of water at 20∘C. Find the total change of entropy of the ice and water when a common temperature has been reached.
A cube 17 cm on each side contains 2.2 g of helium at 20∘C. 1100 J...
A cube 17 cm on each side contains 2.2 g of helium at 20∘C. 1100 J of heat energy are transferred to this gas. Part A What is the final pressure if the process is at constant volume? Express your answer to two significant figures and include the appropriate units. Part B What is the final volume if the process is at constant pressure? Express your answer to two significant figures and include the appropriate units.
If 5.00 m3 of water at 0?C is frozen and cooled to -14 ?C by being...
If 5.00 m3 of water at 0?C is frozen and cooled to -14 ?C by being in contact with a great deal of ice at -14 ?C, estimate the total change in entropy of the process. Express your answer to two significant figures and include the appropriate units.
A 400 g ice cube at -20 ?C is placed in an aluminum cup whose initial...
A 400 g ice cube at -20 ?C is placed in an aluminum cup whose initial temperature is 80 ?C . The system comes to an equilibrium temperature of 20 ?C . What is the mass of the cup? Express your answer with the appropriate units.
Part A) A volume of 90.0 mL of H2O is initially at room temperature (22.00 ∘C)....
Part A) A volume of 90.0 mL of H2O is initially at room temperature (22.00 ∘C). A chilled steel rod at 2.00 ∘C is placed in the water. If the final temperature of the system is 21.50 ∘C , what is the mass of the steel bar? Use the following values: specific heat of water = 4.18 J/(g⋅∘C) specific heat of steel = 0.452 J/(g⋅∘C) Express your answer to three significant figures and include the appropriate units. Part B) The...
Part A A volume of 80.0 mL of H2O is initially at room temperature (22.00 ∘C)....
Part A A volume of 80.0 mL of H2O is initially at room temperature (22.00 ∘C). A chilled steel rod at 2.00 ∘C is placed in the water. If the final temperature of the system is 21.30  ∘C , what is the mass of the steel bar? Use the following values: specific heat of water = 4.18 J/(g⋅∘C) specific heat of steel = 0.452 J/(g⋅∘C) Express your answer to three significant figures and include the appropriate units. The specific heat of...
A 80 g ice cube at -53°C is placed in a lake whose temperature is 44°C....
A 80 g ice cube at -53°C is placed in a lake whose temperature is 44°C. Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is 2220 J/kg·K. (Hint: Will the ice cube affect the temperature of the lake?)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT