Question

Problem 2. (based on Young & Freedman 9.47) A frictionless pulley has the shape of a...

Problem 2. (based on Young & Freedman 9.47) A frictionless pulley has the shape of a uniform solid disk of mass 2.50 kg and radius .0200 m. A stone of unknown mass is attached to a very light wire that is wrapped around the rim of the pulley. When the system is released from rest, the stone accelerates downward at 5.9 m/s 2 (a) What is the angular acceleration of the pulley? Answer: 295 rad/s 2 (b) Find the torque on the pulley from the wire. Answer: .148 Nm (c) What is the tension in the wire? Answer: 7.38 N (d) Find the mass of the stone. Answer: 1.89 kg I can't find the right answer for (d)

Homework Answers

Answer #1


Given

   mass of solid disc m = 2.5 kg, radius r = 0.02 m
mass of stone M= ?

   when stone released from rest , accelerating 5.9 m/s2so the angular acceleration is a = r*alpha ==> alpha = a/r = 5.9/0.02 = 295 rad/s

b)
  
Torque T = I*alpha
   = 0.5*mR^2*alpha
   = 0.5*2.5*0.02^2*295 N
   = 0.1475 Nm
c)tension in the wire = 7.38 N


d)mass of stone M =?

   tension T = Mg ==> M = T/g = 7.38/9.8 kg = 0.753 kg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A frictionless pulley has the shape of a uniform solid cylinder of mass 2.5 kg and...
A frictionless pulley has the shape of a uniform solid cylinder of mass 2.5 kg and radius 15 cm. A 2.1 kg stone is attached to a very light wire that is wrapped around the rim of the pulley, and the system is released from rest. When the stone has lost 3J of gravitational potential energy, how much kinetic energy does the pulley have? The Answer is 1.1 J I just don't know how to reach this answer.
A stone is suspended from the free end of a wire that is wrapped around the...
A stone is suspended from the free end of a wire that is wrapped around the outer rim of a pulley, similar to what is shown in (Figure 1). The pulley is a uniform disk with mass 13.0 kg and radius 29.0 cm and turns on frictionless bearings. You measure that the stone travels a distance 12.4 m during a time interval of 3.00 s starting from rest. part A :Find the mass of the stone. part b :Find the...
A stone is suspended from the free end of a wire that is wrapped around the...
A stone is suspended from the free end of a wire that is wrapped around the outer rim of a pulley, as shown in the figure (see the figure (Figure 1) ). The pulley is a uniform disk with mass 12.0kg and radius 31.0cm and turns on frictionless bearings. You measure that the stone travels a distance 12.7m during a time interval of 2.00s starting from rest. A. Find the mass of the stone. Take the free fall acceleration to...
a. Through how many revolutions does a frisbee have to rotate to reach an angular speed...
a. Through how many revolutions does a frisbee have to rotate to reach an angular speed of 570 rad/s if it starts from rest and experiences a constant angular acceleration of 160 rad/s2? b. How long does it take the frisbee to reach the angular speed of 570 rad/s? c. A cord is wrapped around a pulley of radius 33.0 cm and mass 4.00 kg. A tension of 15.0 N is applied to end of the cord. A friction torque...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley. The pulley has the shape of a uniform solid disk of mass 2.40 kg and diameter 0.420 m. A)After the system is released, find the horizontal tension in the wire. B) After the system is released, find the vertical tension in the wire. C)After the system is released, find the acceleration of...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about...
A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a mass of 127.0 kg, a radius of 2.00 m, and a rotational inertia of 5.08×102 kgm2 about the axis of rotation. A student of mass 66.0 kg walks slowly from the rim of the platform toward the center. If the angular speed of the system is 1.31 rad/s when the student...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1) ). The pulley has the shape of a uniform solid disk of mass 2.00 kg and diameter 0.520 m . Part A After the system is released, find the horizontal tension in the wire. Part B After the system is released, find the vertical tension in the wire....
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1)). The pulley has the shape of a uniform solid disk of mass 2.20 kg and diameter 0.520 m .After the system is released, find the horizontal tension in the wire.After the system is released, find the vertical tension in the wire.After the system is released, find the acceleration...
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at...
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at rest and accelerates uniformly for t = 16.8 s, to a final angular speed of ω = 26 rad/s. 1) What is the angular acceleration of the disk? rad/s2 2) What is the angular displacement over the 16.8 s? rad 3) What is the moment of inertia of the disk? kg-m2 4) What is the change in rotational energy of the disk? J 5)...
A wheel (disk) of radius 0.2 m and mass 1 kg are mounted on a frictionless...
A wheel (disk) of radius 0.2 m and mass 1 kg are mounted on a frictionless horizontal axis. A massless cord is wrapped around the wheel and attached to a 2 kg object that slides on a frictionless surface inclined at an angle of 60 degrees with the horizontal. What is the acceleration of the block as well as the angular acceleration of the wheel about its axis of rotation? Answer: 6.93 m/s^2, 34.64 rad/s^2