Question

At t = 0, a 755 g mass at rest on the end of a horizontal...

At t = 0, a 755 g mass at rest on the end of a horizontal spring (k = 120 N/m) is struck by a hammer, which gives it an initial speed of 2.76 m/s.

(a) Determine the period of the motion.
s
Determine the frequency of the motion.
Hz

(b) Determine the amplitude.
m

(c) Determine the maximum acceleration.
m/s2

(d) Determine the position as a function of time.
(  m ) sin[ (  rad/s)t ]

(e) Determine the total energy.
J

Hint- Pi is in radians

Homework Answers

Answer #1

Given: k = 120 N/m, m = 755 g, vi= 2.76 m/s

1) T = 2 x 3.14 sqrt(m/k) = 6.28 x 0.079 s = 0.498 s

2) w = 2 x 3.14 x f = 12.6 rad/s,

    f = 1/T = 2 Hz

3) Amplitude, A is given by,

kA2=m vi2

A = 0.218 m

4) Maximum acceleration, amax = -Aw2 = -34.64 m/s2

5) The position, y = A sin (wt) = (0.218 m) sin (12.6t)

6) The total energy, E = K.E + P.E

Total energy is

K.E = (1/2) m (vmax)2 = (1/2) x 0.755 x (wA)2 = 2.85 J at x = 0

P.E = (1/2) k x2 = (1/2) x 120 x A2 = 2.85 J at x = A

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At t = 0, a 750g mass at rest on the end of a horizontal spring...
At t = 0, a 750g mass at rest on the end of a horizontal spring (k = 103N/m) is struck by a hammer, which gives it an initial speed of 2.98m/s. Determine the period of the motion. Determine the frequency of the motion. Use units of "Hz". Determine the amplitude. Determine the magnitude of the maximum acceleration. Determine the total energy.
At t=0, an 840-g mass at rest on the end of a horizontal spring (k =...
At t=0, an 840-g mass at rest on the end of a horizontal spring (k = 160 N/m ) is struck by a hammer which gives it an initial speed of 2.30 m/s . Determine the period of the motion. Determine the frequency of the motion. Determine the amplitude Determine the maximum acceleration. Determine the total energy. Determine the kinetic energy when x=0.40A where A is the amplitude
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz...
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz . At t =0s, the mass is at x= 4.20 cm and has vx =− 23.0 cm/s . Determine: (a) the period s (b) the angular frequency rad/s (c) the amplitude cm (d) the phase constant rad (e) the maximum speed cm/s (f) the maximum acceleration cm/s2 (g) the total energy J (h) the position at t = 4.2s
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.10 N is applied. A 0.440-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (a)...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A mass at the end of a horizontal ideal spring undergoes simple harmonic motion of amplitude...
A mass at the end of a horizontal ideal spring undergoes simple harmonic motion of amplitude 0.700 m and of frequency 3.00 Hz as it slides on a frictionless horizontal surface. The particle is at x = 0.700 m at time t = 0.00 s. The magnitude of the force on the particle at t = 0.00 s is 14.6 N. Calculate: (a) the position of the particle at t = 0.452 s, (b) the velocity of the particle at...
A particle with mass 1.23 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 1.23 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.847 m and a duration of 125 s for 69 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 41.3% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 570 N/m. The spring is stretched 9.30 cm from equilibrium and released. (a) What is the frequency of the motion? _____Hz (b) What is the period of the motion? ______s (c) What is the amplitude of the motion? ______cm (d) What is the maximum speed of the motion? ______m/s (e) What is the maximum acceleration of...
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5...
A 2.2 kg object is attached to a horizontal spring of force constant k = 4.5 kN/m. The spring is stretched 10 cm from equilibrium and released. (a) Find the frequency of the motion. Hz (b) Find the period. s (c) Find the amplitude. m (d) Find the maximum speed. m/s (e) Find the maximum acceleration. m/s2 (f) When does the object first reach its equilibrium position? ms What is its acceleration at this time? m/s2
When a mass of m = 254 g is attached to a spring and the mass-spring...
When a mass of m = 254 g is attached to a spring and the mass-spring system is set into oscillatory motion, the period of the motion is T = 0.427 s. Determine the following. (a) frequency of the motion in hertz Hz (b) force constant of the spring N/m (c) amplitude of the oscillation, if the total energy of the oscillating system is 0.288 J m
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT