Question

A vertical electric field is set up in space to compensate for the gravitational force on...

A vertical electric field is set up in space to compensate for the gravitational force on a point charge. What is the required magnitude and direction of the field when the point charge is: (a) an electron? (b) a proton? Comment on the obtained values. Please draw a graph!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
24. An alpha (α) particle is positioned in an electric field such that the gravitational force...
24. An alpha (α) particle is positioned in an electric field such that the gravitational force acting on it is equal to the electrostatic force.              (qα = 3.2 x 10–19 C and mα = 6.64 x 10–27 kg) a) What is the direction of the electric field at this point? b) What is strength of the electric field? c) If the field is located 0.25 m away, what is the magnitude of the charge? Determine the potential at a...
In a region of space, there is an electric field. At a particular point, the electric...
In a region of space, there is an electric field. At a particular point, the electric field is E = (5.0(i-hat) + 12(j-hat)) V/m. A point charge of −300 nC is placed at this point. What is the magnitude of the force on the point charge? What is the x-component and y-component of the force on the point charge? What is the direction of the force on the point charge?
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103...
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103 N/C. The electrons have an initial velocity of 1.01 107 m/s, directed horizontally. The field acts over a small region, 5.00 cm in the horizontal direction. (a) Find the magnitude and direction of the electric force exerted on each electron. (b) How does the gravitational force on an electron compare with the electric force? (c) How far has each electron moved in the vertical...
Charges are accelerated by which nature phenomenon? Centripetal force Gravity The universal gravitational force Electric force...
Charges are accelerated by which nature phenomenon? Centripetal force Gravity The universal gravitational force Electric force When two charges that have the same charge get close enough to interact with one another, what would happen? The electric force would not allow them to touch Gravity would pull them together The proton would change to a neutron The electric force and gravity would make a test charge Energy is a scalar quantity… which of the following would be of the same...
A proton and an electron are fixed in space with a separation of 947 nm. Calculate...
A proton and an electron are fixed in space with a separation of 947 nm. Calculate the electric potential at the midpoint between the two particles. Find the magnitude and direction of the electric field at the same point. Potential: _____V Magnitude of field: ______N/C Direction of field: (a) toward the proton (b) toward the electron (c) another direction (d) undetermined
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m....
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m. What is the strength of the field at a distance of 6.0 m? 24. An alpha (α) particle is positioned in an electric field such that the gravitational force acting on it is equal to the electrostatic force.              (qα = 3.2 x 10–19 C and mα = 6.64 x 10–27 kg) a) What is the direction of the electric field at this point?...
Suppose there is a uniform electric field in a large region including the origin. Somebody comes...
Suppose there is a uniform electric field in a large region including the origin. Somebody comes in, places a −8-C (negative) charge at a point, makes some measurements, and then takes it away. Then you come in, place a +2-C (positive) charge at that point, and measure a force of 6 N directed “down” acting on your charge. Enter the magnitude and direction of the force and the electric field experienced by the two charges, as follows. a. Magnitude of...
1.When a charge q is placed at a certain point in an electric field, it experiences...
1.When a charge q is placed at a certain point in an electric field, it experiences a force toward the west of magnitude F. If instead a change 2q were placed at that same point what force would it experience? A.a force toward the east, of magnitude F/2 B.a force toward the east, of magnitude F C.a force toward the east, of magnitude 2F D.a force toward the west, of magnitude F/2 E.a force toward the west, of magnitude F...
A particular electric dipole consists of a proton of charge of 1.6x10-19 Coulomb and an electron...
A particular electric dipole consists of a proton of charge of 1.6x10-19 Coulomb and an electron of charge of -1.6x10-19 Coulomb, separated by 2x10-10[m] = 0.2[nm]. 1a. What’s the electrostatic force between the charges (magnitude and direction), and why? 1b. What’s the electric field magnitude and direction at a point halfway between the two charges, and why? 1c. How much energy (in electron Volts OR in Joules) is needed to separate these two charges?
An electron with kinetic energy 4.0 keV moves horizontally into a region of space in which...
An electron with kinetic energy 4.0 keV moves horizontally into a region of space in which there is a downward-directed electric field of magnitude 14 kV/m. (a) What are the magnitude and direction of the (smallest) magnetic field that will cause the electron to continue to move horizontally? Ignore the gravitational force, which is rather small. ______ (magnitude) Show all work
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT