Question

When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...

When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV .

What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 330 nm falls on the same surface?

Use h = 6.63×10?34J?s for Planck's constant and c = 3.00×108m/s for the speed of light and express your answer in electron volts.

Homework Answers

Answer #1

maximum kinetic energy of an ejected electron

Kmax = hc/1 - W

so work function

W = hc/1 - Kmax

W = [ 6.63*10-34 *3*108 / 400*10-9 ] - [1.10*1.6*10-19 ]

W = 4.97*10-19 - 1.76*10-19

W = 3.21*10-19 J

Now

Maximum kinectic energy of an ejected electron

Kmax = hc/2 - W

Kmax = [ 6.63*10-34 *3*108 / 330*10-9 ] - [3.21*10-19 ]

Kmax = 2.81*10-19 J

Kmax = 2.81*10-19 /1.6*10-19 eV

Kmax = 1.75 eV

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K_0 of the photoelectrons when light of wavelength 340 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts. View Available Hint(s) K_0 =    eV
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum...
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 350 nm falls on the same surface? Use h = 6.63×10?34 J?s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts.
When ultraviolet light with a wavelength of 400 nmnm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nmnm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eVeV . What is the maximum kinetic energy K0K0K_0 of the photoelectrons when light of wavelength 270 nmnm falls on the same surface? Use hhh = 6.63×10−34 J⋅sJ⋅s for Planck's constant and ccc = 3.00×108 m/sm/s for the speed of light and express your answer in electron volts.
When ultraviolet light with a wavelength of 262 nm falls upon a clean metal surface, the...
When ultraviolet light with a wavelength of 262 nm falls upon a clean metal surface, the stopping potential necessary to terminate the emission of photoelectrons is 0.172 V .What is the photoelectric threshold wavelength for this metal? What is the work function for the metal?
When a monochromatic ultraviolet light with a wavelength of 254 nm falls onto the surface of...
When a monochromatic ultraviolet light with a wavelength of 254 nm falls onto the surface of a particular metal it causes a photocurrent to flow. A stopping voltage of 2.30 V is required to totally block the photocurrent. a. What is the work function of the material? W = _______ eV b. What is the cutoff wavelength for this metal? λ = ________ nm c. Will light with a wavelength of 523 nm be able to cause a photocurrent from...
1. An ultraviolet light with wavelength 380 nm and intensity 1.00 W/m2 falling on 1.00 cm2...
1. An ultraviolet light with wavelength 380 nm and intensity 1.00 W/m2 falling on 1.00 cm2 area of Lithium surface. If 0.9 % of the incident photons produces photoelectrons, how many photons emitted per second. 2.Calculate maximum kinetic energy of ejected photoelectron when 320 nm light falls on Silver surface.
Light with a wavelength of 425 nm falls on a photoelectric surface that has a work...
Light with a wavelength of 425 nm falls on a photoelectric surface that has a work function of 2.00 eV. What is the maximum speed of any emitted photoelectrons?
1. Light of wavelength 401 nm incident on a certain metal produces photoelectrons with a maximum...
1. Light of wavelength 401 nm incident on a certain metal produces photoelectrons with a maximum kinetic energy of 1.78 eV. What is the maximum wavelength of light capable of producing photoelectrons for this metal? 2. Electrons in an electron microscope have been accelerated through a potential difference of 1250 V. How large is their de Brogile wavelength?
You illuminate a metal with light of wavelength 590 nm and find that the photoelectrons have...
You illuminate a metal with light of wavelength 590 nm and find that the photoelectrons have a maximum kinetic energy of 0.70 eV. You then illuminate the same metal with light of another wavelength and find a maximum kinetic energy of 1.9 eV for the photoelectrons. What is the second wavelength, in nanometers?
Photoelectrons are observed when a metal surface is illuminated by light with a wavelength 437 nm....
Photoelectrons are observed when a metal surface is illuminated by light with a wavelength 437 nm. The stopping potential for the photoelectrons in this experiment is 1.67V. a. What is the work function of the metal, in eV? b. What type of metal is used in this experiment? c. What is the maximum speed of the ejected electrons?