Question

The sound from the whistle of a truck is 2500 Hz. The truck is moving at...

The sound from the whistle of a truck is 2500 Hz. The truck is moving at 30.0 m/s toward a building, which reflects the sound and is heard by the driver of the truck. As heard by the driver of the truck, how much does the frequency change from the original frequency of the whistle? The speed of sound is 340 m/s.

Homework Answers

Answer #1

Using Doppler effect,

first when truck run towards stationary building, then frequency reached at wall will be

When Source is moving towards stationary observer, then

f1 = f0*V/(V - Vs)

V = Speed of sound = 340 m/sec

Vs = Speed of source(truck) = 30.0 m/sec

f0 = frequency of sound source = 2500 Hz

So,

f1 = 2500*340/(340 - 30) = 2741.9 Hz

Now this frequency f1 will be reflected by wall and heard by you, then

Now when Source is stationary and object is moving towards the source

Now you are observer and wall is source, So

f2 = f1*(V + Vo)/V

Vo = Speed of observer = 30 m/sec

So,

f2 = 2741.9*(340 + 30)/340 = 2983.8 Hz

frequency heard by driver after it's reflected off the wall = 2983.8 Hz

frequency change from the original frequency of the whistle = df = f2 - f0 = 2983.8 - 2500 = 483.8 Hz

"Let me know if you have any query."

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two semi-trucks are moving toward each other at 31.9 m/s relative to the ground (meaning this...
Two semi-trucks are moving toward each other at 31.9 m/s relative to the ground (meaning this is the speed of each truck with respect to the ground). One truck is honking its horn that has a frequency of 530 Hz. (a) What frequency is heard by the driver of the other truck when there is no wind? (b) What frequency is heard by the driver of the other truck when the wind is blowing at 31.9 m/s toward the horn...
A train is moving away from an observer at 31.0 m/s blows a 305 Hz whistle....
A train is moving away from an observer at 31.0 m/s blows a 305 Hz whistle. What frequency is detected by the stationary observer? Assume standard pressure and 20°C for the speed of sound.
A police car with a siren of 300 Hz. is moving toward a warehouse at 30...
A police car with a siren of 300 Hz. is moving toward a warehouse at 30 m/s. What frequency does the driver hear reflected from the warehouse? The speed of sound is 343 m/s.
A truck moving at 36 m/s passes a police car moving at 45 m/s in the...
A truck moving at 36 m/s passes a police car moving at 45 m/s in the opposite direction. The frequency of the sound emitted by the siren on the police car is 500 Hz and the speed of sound in air is 343 m/s. (a) What is the frequency heard by an observer in the truck as the police car approaches the truck? (b) What is the frequency heard by an observer in the truck after the police car passes...
A siren emitting a sound of frequency 1000 Hz moves towards you, and away from a...
A siren emitting a sound of frequency 1000 Hz moves towards you, and away from a cliff at a speed of 25 m/s. a) what is the frequency of sound you heard coming directly to you from the siren? B) what is the frequency of sound you hear reflected from the cliff? (speed of sound = 340 m/s).
A fire truck emits an 1080 Hz siren. As the truck approaches an observer on the...
A fire truck emits an 1080 Hz siren. As the truck approaches an observer on the sidewalk, he perceives the frequency of the siren to be 1150 Hz. Approximately what frequency does he hear after the truck passes and is moving away? Assume the truck's velocity remains constant, and that the velocity of sound in air is 340 m/s.
Two cars moving with the same speed are approaching each other from opposite directions. The driver...
Two cars moving with the same speed are approaching each other from opposite directions. The driver of one of the car blows his horn, which emits sound with the frequency of 400 Hz. The driver in the other car hears the frequency of 450 Hz. What is the speed of the cars if the speed of sound is 340 m/s?
Doppler Effect: 1. A stationary police officer using a speed “radar detector” sends a signal with...
Doppler Effect: 1. A stationary police officer using a speed “radar detector” sends a signal with a frequency of 100,000 Hz. The speed of sound is 340 m/s. What is the wavelength of the (ultra) sound wave produced by the detector? The sound wave reflects off a vehicle moving toward the officer. How does the frequency of the reflected sound wave (as recorded by the detector) compare to the original sound wave? 2. The light waves from a distance start...
The frequency will sound different if we hear a sound source moving relative to us. This...
The frequency will sound different if we hear a sound source moving relative to us. This phenomenon is called the Doppler Effect in Physics. An ambulance sounds a siren at 1515 Hz and passes a cyclist moving at 2.12 m / s. After the ambulance passed, the cyclist heard a siren sound at a frequency of 1501 Hz. The speed of sound in the air is about 343 m / s. What is the speed (speed) of the ambulance in...
The siren on an ambulance is emitting a sound whose frequency is 2550 Hz. The speed...
The siren on an ambulance is emitting a sound whose frequency is 2550 Hz. The speed of sound is 343 m/s. (a) If the ambulance is stationary and you (the "observer") are sitting in a parked car, what are the wavelength and the frequency of the sound you hear? (b) Suppose that the ambulance is moving toward you at a speed of 26.2 m/s. Determine the wavelength and the frequency of the sound you hear. (c) If the ambulance is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT