Question

n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and...

n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and pi = 1.88×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.78×105 Pa. What is the volume of the gas at the end of the compression process? What would be the temperature of the gas, if the gas was allowed to adiabatically expand back to its original pressure?

Homework Answers

Answer #1

Use ideal gas law:
pf ∙ Vf = n ∙R∙Tf
=>
Vf = n∙ R∙Tf / pf
= 2.58 mol ∙ 8.3145 Pa∙m³∙K⁻¹∙mol⁻¹ ∙ 376 K / 8.78×10⁵ Pa
= 918.64×10⁻5
= 9.18 L

For an ideal gas undergoing a reversible and adiabatic process:
p∙V^γ = constant
with γ = Cp/Cv
The heat capacity ration for a diatomic ideal gas like hydrogen (H₂) is:
γ = 7/5

Relation above can rewritten in terms of pressure and temperature using ideal gas law:
V = n∙ R∙T/p
=>
p∙(n∙ R∙T/p)^γ = C
<=>
p^(1-γ) ∙ T^γ = C /(n∙ R)^γ = constant
<=>
T / p^[(γ - 1)/γ)] = [C /(n∙ R)^γ]^[1/γ] = constant

for γ = 7/5
T / p^(2/7) = constant
<=>
T' / pi^(2/7) = T / pf^(2/7)
=>
T' = T ∙ (pi/pf)^(2/7)
= 376 K ∙ (1.88×10⁵ Pa / 8.78×10⁵ Pa)^(2/7)
= 242 K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
n = 3.50 mol of Hydrogen gas is initially at T = 309.0 K temperature and...
n = 3.50 mol of Hydrogen gas is initially at T = 309.0 K temperature and pi = 2.34×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.91×105 Pa. 1. What is the volume of the gas at the end of the compression process?   1.01×10-2 m^3 2. How much work did the external force perform? 3. How much heat did the gas emit? 4. How much entropy did the gas emit? 5....
n = 4.42 mol of Hydrogen gas is initially at T = 304.0 K temperature and...
n = 4.42 mol of Hydrogen gas is initially at T = 304.0 K temperature and pi = 3.23×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.93×105 Pa. What is the volume of the gas at the end of the compression process? Tries 0/12 How much work did the external force perform? Tries 0/12 How much heat did the gas emit? Tries 0/12 How much entropy did the gas emit? Tries...
n = 3.50 mol of Hydrogen gas is initially at T = 310 K temperature and...
n = 3.50 mol of Hydrogen gas is initially at T = 310 K temperature and pi = 3.22×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 7.51×105 Pa. What is the volume of the gas at the end of the compression process??
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K...
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. A) Find the work done by the gas during the initial compression B) Find the heat added to the gas during the initial compression...
A cylinder with a piston contains 0.160 mol of nitrogen at 1.80×105 Pa and 310 K...
A cylinder with a piston contains 0.160 mol of nitrogen at 1.80×105 Pa and 310 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. a.) Find the work done by the gas during the initial compression. b.)Find the heat added to the gas during the initial compression. c.)Find...
An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 100 kPa...
An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 100 kPa pressure. It is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to its initial state. a.) Find the net work done on the gas. b.) Find the minimum volume reached.
A 1.79 mol diatomic gas initially at 274 K undergoes this cycle: It is (1) heated...
A 1.79 mol diatomic gas initially at 274 K undergoes this cycle: It is (1) heated at constant volume to 707 K, (2) then allowed to expand isothermally to its initial pressure, (3) then compressed at constant pressure to its initial state. Assuming the gas molecules neither rotate nor oscillate, find (a) the net energy transferred as heat to the gas (excluding energy transferred as heat out of the gas), (b) the net work done by the gas, and (c)...
A 3.44 mol diatomic gas initially at 346 K undergoes this cycle: It is (1) heated...
A 3.44 mol diatomic gas initially at 346 K undergoes this cycle: It is (1) heated at constant volume to 909 K, (2) then allowed to expand isothermally to its initial pressure, (3) then compressed at constant pressure to its initial state. Assuming the gas molecules neither rotate nor oscillate, find (a) the net energy transferred as heat to the gas (excluding energy transferred as heat out of the gas), (b) the net work done by the gas, and (c)...
You have 1.25 mol of hydrogen gas (CV = 5R/2 and Cp= 7R/2) at absolute temperature...
You have 1.25 mol of hydrogen gas (CV = 5R/2 and Cp= 7R/2) at absolute temperature 325 K. You allow the gas to expand adiabatically to a final temperature of 195 K. 1) How much work does the gas do while being compressed? 2) What is the ratio of its final volume to its initial volume? 3) What is the ratio of the final gas pressure to the initial gas pressure?
An ideal gas with ?=1.4 occupies 3.0L at 300 Kand 100kPa pressure and is compressed adiabatically...
An ideal gas with ?=1.4 occupies 3.0L at 300 Kand 100kPa pressure and is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to stateA. Find the net work done on the gas and Vmin?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT