Question

Imagine a horizontal surface in the x-y plane a distance h below the of the sphere,...

Imagine a horizontal surface in the x-y plane a distance h below the of the sphere, which is located at (0,0,0). For any point (x,y,-h) on the surface, located a distance r from the of the sphere, give an expression for the electric field strength in terms of x, y and h.

For any point (x,y,-h) on the surface, express the magnitude of the x, y and z components of the electric field in terms of x and y respectively.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The plane surface at y=0 (the x-z plane) has a uniform surface current in the z...
The plane surface at y=0 (the x-z plane) has a uniform surface current in the z (k) direction. Think of a thin sheet of water flowing in the z direction along some a surface at y=0. Answer the following T/F questions. Use ideas of symmetry and recall that the magnetic field at a point is perpendicular to the current causing it and perpendicular to the line from the current element causing the field to the point where it is evaluated....
An object is launched from a point on a horizontal plane and lands a distance R...
An object is launched from a point on a horizontal plane and lands a distance R away from this point along the same plane. The maximum height of the object's trajectory is H. In terms of R, H and possibly g, derive an expression for (a) launch angle, and (b) the launch speed.
Three parallel, “infinite” sheets of charges are horizontal, parallel to the x-y plane. The sheet at...
Three parallel, “infinite” sheets of charges are horizontal, parallel to the x-y plane. The sheet at z = -5 m is charged at -2 μC/m2. The sheet at z = 0 is charged at 9 μC/m2. The sheet at z = 5 cm is charged by -15 μC/m2. Find the magnitude and direction of the electric field at a point P with Cartesian coordinates (2 m, -3 m, 6 m).
1)Two plane plate capacitors have the same capacitance.If the distance among the plates of the first...
1)Two plane plate capacitors have the same capacitance.If the distance among the plates of the first capacitor is the double of the one of the second capacitor,how is the relationship among the area of the plates ? 2)You have two equal and opposite charged located at a distance d from one another. a)calculate the potentialin every point of the space(set the origin of the coordinate system in the mid point of the segment connecting the charges) b)calculate the value of...
An infinitely large positively charged nonconducting sheet 1 has uniform surface charge density σ1 = +130...
An infinitely large positively charged nonconducting sheet 1 has uniform surface charge density σ1 = +130 nC/m2 and is located in the xz plane of a Cartesian coordinate system. An infinitely large positively charged nonconducting sheet 2 has uniform surface charge density σ2 = +90.0 nC/m2 and intersects the xz plane at the z axis, making an angle θ = 30∘ with sheet 1. Part A Determine the expression for the electric field in the region between the sheets for...
1. Consider x=h(y,z) as a parametrized surface in the natural way. Write the equation of the...
1. Consider x=h(y,z) as a parametrized surface in the natural way. Write the equation of the tangent plane to the surface at the point (5,3,−4) given that ∂h/∂y(3,−4)=1 and ∂h/∂z(3,−4)=0. 2. Find the equation of the tangent plane to the surface z=0y^2−9x^2 at the point (3,−1,−81). z=?
Two test charges are located in the x − y plane. If q 1 = −...
Two test charges are located in the x − y plane. If q 1 = − 3.65 nC and is located at x = 0.00 m, y = 0.880 m and the second test charge has magnitude of q 2 = 3.60 nC and is located at x = 1.20 m, y = 0.650 m, calculate the x and y components, E x and E y , of the electric field, → E , in component form at the origin,...
Plane A carries a uniform surface charge density of -8.30 μC/m^2 , and Plane B, which...
Plane A carries a uniform surface charge density of -8.30 μC/m^2 , and Plane B, which is to the right of A, carries a uniform charge density of +13.6 μC/m^2 . Assume that the planes are large enough to be treated as infinite.The distance between large parallel planes is 5.00 cm. Part A)   Find the magnitude of the net electric field these planes produce at a point 4.00 cm to the right of plane A. Express your answer with the...
Two charges are located in the x�y plane. If q1 = -2.90 nC and is located...
Two charges are located in the x�y plane. If q1 = -2.90 nC and is located at x = 0.00 m, y = 0.920 m and the second charge has magnitude of q2 = 3.40 nC and is located at x = 1.00 m, y = 0.600 m, calculate the x and y components, Ex and Ey, of the electric field, , in component form at the origin, (0,0). The Coulomb Force constant is 1/(4? ?0) = 8.99 � 109...
Two charges are located in the x�y plane. If q1 = -2.30 nC and is located...
Two charges are located in the x�y plane. If q1 = -2.30 nC and is located at x = 0.00 m, y = 1 m and the second charge has magnitude of q2 = 3.00 nC and is located at x = 1.40 m, y = 0.500 m, calculate the x and y components, Ex and Ey, of the electric field, , in component form at the origin, (0,0). The Coulomb Force constant is 1/(4pi E0) = 8.99 � 109...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT