Question

A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω
is placed in a magnetic field directed perpendicular to the plane
of the coil. The magnitude of the magnetic field varies in time
according to the expression *B* = 0.010 0*t* + 0.040
0*t*^{2}, where *B* is in teslas and
*t* is in seconds. Calculate the induced emf in the coil at
*t* = 4.60 s.

Answer #1

A 37-turn circular coil of
radius 4.60 cm and resistance 1.00 Ω is placed
in a magnetic field directed perpendicular to the plane of the
coil. The magnitude of the magnetic field varies in time according
to the expression B = 0.010
0t + 0.040 0t2,
where B is in teslas and t is in
seconds. Calculate the induced emf in the coil
at t = 4.20 s.

A circular coil of 312 winds of wire (radius = 7.0 cm,
resistance = 7.4 Ω) is placed in a uniform magnetic field that is
perpendicular to the plane of the loop. The magnitude of the field
changes with time according to ? = 90sin(7?) mT, where ? is
measured in seconds. Determine the magnitude of the current induced
in the loop at ?=?/7 s.

A 159 ‑turn circular coil of radius 3.49 cm and negligible
resistance is immersed in a uniform magnetic field that is
perpendicular to the plane of the coil. The coil is connected to a
10.9 Ω resistor to create a closed circuit. During a time interval
of 0.141 s, the magnetic field strength decreases uniformly from
0.539 T to zero. Find the energy ? in millijoules that is
dissipated in the resistor during this time interval.

A 20-turn coil with a diameter of 6.00 cm is placed in a
constant, uniform magnetic field of 1.00 T directed perpendicular
to the plane of the coil. Beginning at time t = 0 s, the field is
increased at a uniform rate until it reaches 1.30 T at t = 10.0 s.
The field remains constant thereafter.
1) What is the magnitude of the induced emf in the coil at t
< 0 s?
2) What is the magnitude...

A 173 ‑turn circular coil of radius 2.79 cm and negligible
resistance is immersed in a uniform magnetic field that is
perpendicular to the plane of the coil. The coil is connected to a
11.9 Ω resistor to create a closed circuit. During a time interval
of 0.161 s, the magnetic field strength decreases uniformly from
0.673 T to zero. Find the energy, in millijoules, that is
dissipated in the resistor during this time interval.
energy:____________ mJ

A 133 turn circular coil of radius 2.77 cm is immersed in a
uniform magnetic field that is perpendicular to the plane of the
coil. Over an interval of 0.121 s, the magnetic field strength
increases from 55.7 mT to 95.9 mT. Find the magnitude of the
average emf avgEavg induced in the coil during this time interval,
in millivolts.
avg=Eavg= ?

2. A circular coil with 30 turns of wire has a diameter of 2.00
cm. The total resistance of the coil is 0.350 Ω. An applied uniform
magnetic field is directed upward, perpendicular to the plane of
the coil.
a) If the magnetic field changes linearly from 0.000 T to 0.800
T in 0.500 s, what is the induced emf in the coil while the field
is changing?
b) What is the magnitude and direction (CW or CCW when looked...

A magnetic field is perpendicular to the plane of a single-turn
circular coil. The magnitude of the field is changing, so that an
emf of 0.23 V and a current of 2.4 A are induced in the coil. The
wire is then re-formed into a single-turn square coil, which is
used in the same magnetic field (again perpendicular to the plane
of the coil and with a magnitude changing at the same rate). What
(a) emf and (b) current are...

A coil 5.00 cm in radius, containing 250 turns, is
placed in a uniform magnetic field that varies with time according
to:
B = (0.230 T/s)t + (4.00 x 10-5
T/s5)t5. The coil is connected to
a 450 ohm resistor, and its plane is perpendicular to the magnetic
field. The resistance of the coil can be
neglected. Find the induced emf in the coil as a
function of time.

#5. A coil 5.00 cm in radius, containing 250
turns, is placed in a uniform magnetic field that varies with time
according to:
B = (0.230 T/s)t + (4.00 x 10-5
T/s5)t5. The coil is connected to
a 450 ohm resistor, and its plane is perpendicular to the magnetic
field. The resistance of the coil can be
neglected. Find the induced emf in the coil as a
function of time. (20 pts.)

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 45 seconds ago

asked 1 minute ago

asked 2 minutes ago

asked 2 minutes ago

asked 4 minutes ago

asked 4 minutes ago

asked 9 minutes ago

asked 9 minutes ago

asked 9 minutes ago

asked 9 minutes ago

asked 9 minutes ago

asked 13 minutes ago