Question

An organ pipe is 114 cm long. What is the third audible harmonic if the pipe...

An organ pipe is 114 cm long. What is the third audible harmonic if the pipe is open at both ends? The speed of sound in air is 337 m/s.

Homework Answers

Answer #1

If both ends of the tube are uncovered or open, the musical instrument is said to contain an open-end air column.

Antinodes are present at the open end of the air column. In third harmonic there will will be 4 antinodes and 3 nodes.   In the pattern that there are one and one-half waves present in the length of the air column. One and one-half waves is three times the number of waves that were present in the first harmonic. For this reason, the frequency of the third harmonic is three times the frequency of the first harmonic.

Given is:-

length of the pipe = 114 cm or 1.14 m

the speed of the sound is = 337m/s

Thus

wavelength

Now frequency is

Hence the frequency of the third harmonic in the given open air cylinder is 447.36 Hertzs

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An organ pipe is 130 cm long. The speed of sound in air is 343 m/s....
An organ pipe is 130 cm long. The speed of sound in air is 343 m/s. Part A What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. Part B What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas.
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s....
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s. A. What are the fundamental and first three audible overtones if the pipe is closed at one end? B. What are the fundamental and first three audible overtones if the pipe is open at both ends?
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s....
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s. a. What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. b. What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas. 2.A particular organ pipe can resonate at 252...
A musician measures the frequencies of the audible standing waves in an organ pipe. He finds...
A musician measures the frequencies of the audible standing waves in an organ pipe. He finds two adjacent tones at 245 and 315 Hz. (a) On the basis of this discovery, the musician computes the pipe's fundamental frequency. What is its value (in Hz)? Hz (b) Is the pipe open at both ends or only one? open at both ends open at only one end (c) The air within the pipe has a temperature of 20°C and is at atmospheric...
13. An open pipe of length 0.39 m vibrates in the third harmonic with a frequency...
13. An open pipe of length 0.39 m vibrates in the third harmonic with a frequency of 1400Hz. What is the distance from the center of the pipe to the nearest antinode? 0 cm 13 cm 6.5 cm 9.8 cm 3.2 cm 14. Wave speed (v) equals the product of wavelength and amplitude amplitude and frequency frequency and period wavelength and frequency 15. A standing wave of the fifth harmonic is induced in a stopped pipe of length 1.5m. The...
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third...
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is 343 m/s. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with x = 0 at the closed end. (a) How many nodes...
Pipe A, which is 1.50 m long and open at both ends, oscillates at its third...
Pipe A, which is 1.50 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is 343 m/s. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with x = 0 at the closed end. (a) How many nodes...
An organ pipe is 134cm long and operates at room temperature. What are the frequencies of...
An organ pipe is 134cm long and operates at room temperature. What are the frequencies of the fundamental (n=1) and the next harmonic (n=2) if both ends of the pipe are open? What are the frequencies of the fundamental (n=1) and the next harmonic (n=3) if one end of the pipe is closed?
What is the beat frequency heard when two organ pipes, each open at both ends, are...
What is the beat frequency heard when two organ pipes, each open at both ends, are sounded together at their fundamental frequencies if one pipe is 52 cm long and the other is 62 cm long?(The speed of sound is 340 m/s). Answer in Hz
An organ pipe is 5.90 m long and is closed at one end. (The speed of...
An organ pipe is 5.90 m long and is closed at one end. (The speed of sound at T = 20.0°C is v = 343 m/s.) What is the second lowest standing wave frequency for the organ pipe? What is the third lowest standing wave frequency for the organ pipe? What is the fourth lowest standing wave frequency for the organ pipe? The sound level 23.2 m from a loudspeaker is 63.4 dB. What is the rate at which sound...