Question

Under constant pressure, the temperature of 1.70 mol of an ideal monatomic gas is raised 15.5...

Under constant pressure, the temperature of 1.70 mol of an ideal monatomic gas is raised 15.5 K. (a) What is the work W done by the gas? J (b) What is the energy transferred as heat Q? J (c) What is the change ΔEint in the internal energy of the gas? J (d) What is the change ΔK in the average kinetic energy per atom? J

Homework Answers

Answer #1

a)At constant pressure, work done by gas
W = nR ΔT
n is number of moles of gas, R (gas constant) = 8.3
so W = 1.7 x 8.3 x 15.5 = 218.7 J

b) At constant pressure Q = n Cp ΔT
Cp is molar specific heat at constant pressure and = (f+2)R/f
f is degree of freedom. for monoatomic gas f = 3
So Q = 1.7 x 8.3 x (5/3) 15.5 = 364.5 J

c) Q = ΔE + W
hence ΔE = Q - W = 145.8 J

d) Kinetic energy per atom = f Kb T/2
Kb = R/Na , Na is avogadro number ( 6.2 x 1023 )

so change in KE per atom ΔK = f Kb ΔT /2
   = 3 x 8.3 15.5 / 2 x 6.2 x 1023  = 3.1x10-22 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal monatomic gas expands isothermally from 0.600 m3 to 1.25 m3 at a constant temperature...
An ideal monatomic gas expands isothermally from 0.600 m3 to 1.25 m3 at a constant temperature of 730 K. If the initial pressure is 1.02 ? 105 Pa find the following. (a) the work done on the gas J (b) the thermal energy transfer Q J (c) the change in the internal energy J
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas...
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas expands from an initial volume of 0.70 m3 to a final volume of 1.9 m3 . a) How much work was done by the gas during the expansion? b) What were the initial temperature of the gas? c) What were the final temperature of the gas? d) What was the change in the internal energy of the gas? e) How much heat was added...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
Suppose 1300J of heat are added to 1.5 mol of argon gas at a constant pressure...
Suppose 1300J of heat are added to 1.5 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas. m3
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
8.4 x 1024 particles of monatomic ideal gas are at a temperature of 310 K. What...
8.4 x 1024 particles of monatomic ideal gas are at a temperature of 310 K. What is the total internal energy of the gas? If 2600 J of heat is added to the gas, and 950 J of work is done on the gas, what is the new internal energy of the gas?
In a constant-volume process, 208 J of energy is transferred by heat to 1.08 mol of...
In a constant-volume process, 208 J of energy is transferred by heat to 1.08 mol of an ideal monatomic gas initially at 294 K. (a) Find the work done on the gas. J (b) Find the increase in internal energy of the gas. J (c) Find its final temperature. K
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant...
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant temperature of 675 K. If the initial pressure is 1.00 ∙ 105 Pa, find (a) the work done by the gas, (b) the thermal energy transfer Q, and (c) the change in the internal energy.
Suppose 1300 J of heat are added to 4.3 mol of argon gas at a constant...
Suppose 1300 J of heat are added to 4.3 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas.
Suppose 1400 J of heat are added to 1.8 mol of argon gas at a constant...
Suppose 1400 J of heat are added to 1.8 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas. m3