Question

3. I have two identical lenses each with a focal length of 10 cm. The lenses...

3. I have two identical lenses each with a focal length of 10 cm. The lenses are 15 cm apart. I place an object 15 cm to the left from the first lens.

a. Where is the final image with respect to the second lens (to the far right)?

b. What is the OVERALL magnification of the final image after the second lens and is it real or virtual? Note: when doing this problem, do ONE LENS AT A TIME.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two lenses are placed 50 cm apart. The first lens is converging and has a focal...
Two lenses are placed 50 cm apart. The first lens is converging and has a focal length of 20 cm, and the second lens is diverging and has a focal length of 15 cm. If an object is placed 55 cm in front of the first lens, where is the final image located? Give your answer in relation to the second lens. What is the overall magnification? Is the final image upright or inverted? Is the final image real or...
Two converging lenses, the first with focal length f1 = 25 cm and the second with...
Two converging lenses, the first with focal length f1 = 25 cm and the second with focal length f2 = 15 cm are separated by a distance of ` = 65 cm. An object is place at a distance of do1 = 45 cm to the left of the first lens. (a) What will be the distance from the second lens that the final image is produced? Is this image to the left or right of the second lens? Justify...
3) An object is 17.5 cm to the left of a lens of focal length 8.5...
3) An object is 17.5 cm to the left of a lens of focal length 8.5 cm. A second lens of focal length -30 cm is 5 cm to the right of the first lens. a) Find the distance between the object and final image formed by the second lens. b) What is the overall magnification? c) Is the final image real or virtual? Upright or inverted?
An object is 17.5 cm to the left of a lens of focal length 8.5 cm....
An object is 17.5 cm to the left of a lens of focal length 8.5 cm. A second lens of focal length -30 cm is 5 cm to the right of the first lens. Find the distance between the object and final image formed by the second lens. What is the overall magnification? Is the final image real or virtual? Upright or inverted?
Two thin lenses with a focal length of magnitude 10.0 cm , the first diverging and...
Two thin lenses with a focal length of magnitude 10.0 cm , the first diverging and the second converging, are located 7.50 cm apart. An object 3.00 mm tall is placed 16.7 cm to the left of the first (diverging) lens. How far from this first lens is the final image formed? Is the final image real or virtual? What is the height of the final image? Is it upright or inverted? Thank you!!
Two thin lenses with a focal length of magnitude 11.5 cm, the first diverging and the...
Two thin lenses with a focal length of magnitude 11.5 cm, the first diverging and the second converging, are located 8.62 cm apart. An object 1.90 mm tall is placed 19.2 cm to the left of the first (diverging) lens. A. How far from the first lens is the final image formed? B. Is the final image virtual or real? C. What is the height of the final image? D. Is it upright or inverted?
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the...
Two converging lenses are placed 40.0 cm apart. The focal length of the lens on the right is 21.0 cm , and the focal length of the lens on the left is 10.5 cm . An object is placed to the left of the 10.5 cm focal-length lens. A final image from both lenses is inverted and located halfway between the two lenses. How far to the left of the 10.5 cmcm focal-length lens is the original object?
Two converging lenses (f1 = 9.00 cm and f2 = 6.00 cm) are separated by 18.0...
Two converging lenses (f1 = 9.00 cm and f2 = 6.00 cm) are separated by 18.0 cm. The lens on the left has the longer focal length. An object stands 10.0 cm to the left of the left-hand lens in the combination. (a) Locate the final image relative to the lens on the right. (b) Obtain the overall magnification. (c) Is the final image real or virtual? With respect to the original object, (d) is the final image upright or...
Two converging lenses are placed 15 cm apart. The lens A (on the left) has a...
Two converging lenses are placed 15 cm apart. The lens A (on the left) has a focal length of 5 cm, and lens B (on the right) has a focal length of 4 cm. An object is placed 8 cm to the left of lens A. Draw the scenario and confirm your findings using the equations to find:          a) the final image distance          b) the magnification          c) is the image real or virtual?
Two thin lenses with a focal length of magnitude 11.0 cm, the first diverging and the...
Two thin lenses with a focal length of magnitude 11.0 cm, the first diverging and the second converging, are located 8.25 cm apart. An object 1.60 mm tall is placed 18.3 cm to the left of the first (diverging) lens. Part A How far from this first lens is the final image formed? Part B Is the final image real or virtual? Part C What is the height of the final image? Part D Is it upright or inverted?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT