Question

Consider a pure sample of a radioactive isotope with a mass number of (46+A). If the...

Consider a pure sample of a radioactive isotope with a mass number of (46+A). If the sample has mass of (25.0+B) micrograms and the isotope has a half-life of (4.50+C)x106 years, determine the decay rate for the sample. Give your answer in decays/second and with 3 significant figures.

A= 9

B= 0

C= 11

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a pure sample of a radioactive isotope with a mass number of (52). If the...
Consider a pure sample of a radioactive isotope with a mass number of (52). If the sample has mass of (25.0) micrograms and the isotope has a half-life of (12.5)x10^6 years, determine the decay rate for the sample. Give your answer in decays/second and with 3 significant figures.
1. In a particular metal, the K-shell has an energy of -(24.0+A) keV, while the L-shell...
1. In a particular metal, the K-shell has an energy of -(24.0+A) keV, while the L-shell has an energy of –(2.50+B) keV. Find the wavelength of the Kα (alpha) characteristic x-ray for this metal. Give your answer in picometers (pm) and with 3 significant figures. A:4 B:5 2. Consider an isotope with an atomic number of (2(5+A)) and a mass number of (4(5+A)+2). Using the atomic masses given in the attached table, calculate the binding energy per nucleon for this...
Consider (12.5 + A) micro-grams of a radioactive isotope with a mass number of (78 +...
Consider (12.5 + A) micro-grams of a radioactive isotope with a mass number of (78 + B) and a half-life of (32.6 + C) million years. If energy released in each decay is 32.6 keV, determine the total energy released in joules (J) in 1 (one) year. Give your answer with three significant figures. A= 9 B= 0 C= 11
Consider (12.5 + A) micro-grams of a radioactive isotope with a mass number of (78 +...
Consider (12.5 + A) micro-grams of a radioactive isotope with a mass number of (78 + B) and a half-life of (32.6 + C) million years. If the energy released in each decay is 32.6 keV, determine the total energy released in joules (J) in 1 (one) year. Give your answer with three significant figures. A=1 B=5 C=11
The radioactive isotope 210 Bi 83 decays by alpha emission. If the mass of a sample...
The radioactive isotope 210 Bi 83 decays by alpha emission. If the mass of a sample of bismuth-210 decays from 99.1 micrograms to 12.4 micrograms in 15.0 days, what is the half-life of bismuth-210? Half-life = days
Consider 13.5 micro-grams of a radioactive isotope with a mass number of 85 and a half-life...
Consider 13.5 micro-grams of a radioactive isotope with a mass number of 85 and a half-life of 46.6 million years. If energy released in each decay is 46.6 keV, determine the total energy released in joules (J) in 1 (one) year. Give your answer with three significant figures.
The radioactive isotope 32P decays by first-order kinetics and has a half-life = 14.3 days. How...
The radioactive isotope 32P decays by first-order kinetics and has a half-life = 14.3 days. How many atoms of a 1.0000 ug sample of 32P would decay in 1.0000 second? (Assume 1 decay per atom.)
A sample of a certain radioactive material decays to 89.36% of its mass after 2 years....
A sample of a certain radioactive material decays to 89.36% of its mass after 2 years. a. What is the half-life of the material? Show your calculations and keep four significant figures of accuracy. b. How long would it take for the sample to decay to 10% of its original mass? How much longer after that would it take to decay to 1% of its original mass?
The radioactive isotope 234Pa has a half-life of 6.70 h. A sample containing this isotope has...
The radioactive isotope 234Pa has a half-life of 6.70 h. A sample containing this isotope has an initial activity (t = 0) of 35.0µCi. Calculate the number of nuclei that decay in the time interval between t1 = 7.0 h and t2 = 14.0 h. ___________ Nuclei
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has...
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has an initial mass of 64 mg, a function that models the mass in mg after t hours is a(t) =   The initial mass will decay to 12 mg after ______ hours Radioactive decay equation: a(t) = a0⋅2 ^ (−t / h) a0 = starting amount a(t) = amount after t hours h = half life in hours
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT