Question

A 2.10 kgkg frictionless block is attached to an ideal spring with force constant 317 N/mN/m...

A 2.10 kgkg frictionless block is attached to an ideal spring with force constant 317 N/mN/m . Initially the block has velocity -4.00 m/sm/s and displacement 0.260 mm .

A.Find the amplitude of the motion.

B. Find the maximum acceleration of the block.

C. Find the maximum force the spring exerts on the block.

Homework Answers

Answer #1

A.

Kinetic Energy of the block,

Potential energy stored in the spring when it is stretched by 0.26 mm,

Potential energy of the spring at amplitude A,

Kinetic energy at this point will be zero, because speed at maximum stretch (amplitude) is zero

Now, since there is no friction,

B. Maximum force on the block,

Maximum acceleration,

C. Maximum force,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.30 kg frictionless block is attached to an ideal spring with force constant 314 N/m...
A 2.30 kg frictionless block is attached to an ideal spring with force constant 314 N/m . Initially the block has velocity -3.50 m/s and displacement 0.240 m . Find the amplitude of the motion.? Find the maximum acceleration of the block.? Find the maximum force the spring exerts on the block.?
A 2.10-kg frictionless block is attached to an ideal spring with force constant 355 N/mN/m. Initially...
A 2.10-kg frictionless block is attached to an ideal spring with force constant 355 N/mN/m. Initially the spring is neither stretched nor compressed, but the block is moving in the negative direction at 15.0 m/s A)Find the maximum acceleration of the block. Express your answer in meters per second squared. B)Find the maximum force the spring exerts on the block. Express your answer in newtons.
A frictionless block of mass 2.45 kg is attached to an ideal spring with force constant...
A frictionless block of mass 2.45 kg is attached to an ideal spring with force constant 320 N/mN/m . At t=0 the spring is stretched to 6 cm from the equilibrium position and released. Find the position of the block at t=5 s Find the velocity of the block at t=5 s Find the acceleration of the block at t=5 s
A 0.454-kgkg block is attached to a horizontal spring that is at its equilibrium length, and...
A 0.454-kgkg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 22.0 N/mN/m. The block rests on a frictionless surface. A 5.80×10−2-kgkg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.94 m/sm/s and sticking. Part A How far does the putty-block system compress the spring?
A small block is attached to an ideal spring and is moving in SHM on a...
A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. The amplitude of the motion is 0.240 mm and the period is 3.41 ss. A) What is the acceleration of the block when x = 0.160 m? B) What is the speed of the block when x = 0.160 m?
A block-spring system consists of a spring with constant k = 445 N/m attached to a...
A block-spring system consists of a spring with constant k = 445 N/m attached to a 2.25 kg block on a frictionless surface. The block is pulled 4.10 cm from equilibrium and released from rest. For the resulting oscillation, find the amplitude, angular frequency, frequency, and period. What is the maximum value of the block's velocity and acceleration?
A 170 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 170 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 25 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.6 cm ?
A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on...
A 120 g block attached to a spring with spring constant 3.0 N/m oscillates horizontally on a frictionless table. Its velocity is 17 cm/s when x0 = -4.5 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on...
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on a frictionless table. Its velocity is 22 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
A block with mass  3.10 kgkg   is attached to a vertical spring that has negligible mass and...
A block with mass  3.10 kgkg   is attached to a vertical spring that has negligible mass and force constant 895 N/mN/m . The spring initially is relaxed and in equilibrium. The block is released from rest. a) What is its speed after it has descended 0.0500 mm from its initial position? Express your answer with the appropriate units. b) What is the maximum speed of the block as it descends? Express your answer with the appropriate units.