Question

A proton is located at the origin, and a second proton is located on the x-axis...

A proton is located at the origin, and a second proton is located on the x-axis at x = 6 fm (1 fm = 10-15 m).
(ma = 6.64 × 10-27 kg, e = 1.6 × 10-19 C)

(a) An alpha particle (charge = 2e, mass = 6.64 x 10-27 kg) is now placed at (x, y) = (3, 5) fm. Calculate the electric potential energy associated with this configuration.

0.641  J

0.345  J

1.962  J

1.141  J

(b) Starting with the three-particle system, find the change in electric potential energy if the alpha particle is allowed to escape to infinity while the two protons remain fixed in place. (Throughout, neglect any radiation effects.)

–1.053 J

–2.526 J

–7.073 J

–1.579 J

(c) Use conservation of energy to calculate the speed of the alpha particle at infinity.

6,895,902 m/s

1,103,344 m/s

18,618,934 m/s

2,758,361 m/s

(d) If the two protons are released from rest and the alpha particle remains fixed, calculate the speed of the protons at infinity.

0.374m/s

9.994m/s

1.084 m/s

0.170m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton is located at the origin, and a second proton is located on the x-axis...
A proton is located at the origin, and a second proton is located on the x-axis at x1 = 5.56 fm (1 fm = 10?15 m). (a) Calculate the electric potential energy associated with this configuration. J (b) An alpha particle (charge = 2e, mass = 6.64 ? 10?27 kg) is now placed at (x2, y2) = (2.78, 2.78) fm. Calculate the electric potential energy associated with this configuration. J (c) Starting with the three particle system, find the change...
A proton is located at the origin, and a second proton is located on the x-axis...
A proton is located at the origin, and a second proton is located on the x-axis at x1 = 6.96 fm (1 fm = 10−15 m). (a) Calculate the electric potential energy associated with this configuration. J (b) An alpha particle (charge = 2e, mass = 6.64 ✕ 10−27 kg) is now placed at (x2, y2) = (3.48, 3.48) fm. Calculate the electric potential energy associated with this configuration. J (c) Starting with the three particle system, find the change...
A proton is located at the origin, and a second proton is located on the x-axis...
A proton is located at the origin, and a second proton is located on the x-axis at x = 6 fm (1 fm = 10-15 m). (ma = 6.64 × 10-27 kg, e = 1.6 × 10-19 C) (c) Starting with the three-particle system, find the change in electric potential energy if the alpha particle is allowed to escape to infinity while the two protons remain fixed in place. (Throughout, neglect any radiation effects.) ------------ J (d) Use conservation of...
A proton is located at the origin, and a second proton is located on the x-axis...
A proton is located at the origin, and a second proton is located on the x-axis at x = 6 fm (1 fm = 10-15 m). (ma = 6.64 × 10-27 kg, e = 1.6 × 10-19 C) (a) Calculate the electric potential energy associated with this configuration. (b) An alpha particle (charge = 2e, mass = 6.64 x 10-27 kg) is now placed at (x, y) = (3, 5) fm. Calculate the electric potential energy associated with this configuration....
A proton is located at <0, 0, -2.7 × 10−9> m and an alpha particle (consisting...
A proton is located at <0, 0, -2.7 × 10−9> m and an alpha particle (consisting of two protons and two neutrons) is located at <2.3 × 10−9, 0, 2.1 × 10−9>. (Express your answers in vector form.) (a) Calculate the force the proton exerts on the alpha particle. (b) Calculate the force the alpha particle exerts on the proton.
Two particles each with charge +2.77 µC are located on the x axis. One is at...
Two particles each with charge +2.77 µC are located on the x axis. One is at x = 1.00 m, and the other is at x = −1.00 m. (a) Determine the electric potential on the y axis at y = 0.520 m. Your response is off by a multiple of ten. kV (b) Calculate the change in electric potential energy of the system as a third charged particle of -2.98 µC is brought from infinitely far away to a...
An alpha particle of charge +2e and mass 6.64 × 10-27 kg is moving in the...
An alpha particle of charge +2e and mass 6.64 × 10-27 kg is moving in the +x direction at 1.79×106 m/s. It enters a region where the electric field is 1591 N/C in the -x direction. a. How far will the alpha particle travel before it comes to a stop? 2.33 * 10^-5 m Calculate the acceleration, then use the appropriate kinematic equation. b. How much time will elapse from when the alpha particle enters the electric field to when...
A proton is acted on by an uniform electric field of magnitude 443 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 443 N/C pointing in the negative x direction. The particle is initially at rest. (a) In what direction will the charge move? ---Select--- +x direction ?x direction +y direction ?y direction +z direction ?z direction (b) Determine the work done by the electric field when the particle has moved through a distance of 3.15 cm from its initial position. J (c) Determine the change in electric potential energy...
A proton is acted on by an uniform electric field of magnitude 313 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 313 N/C pointing in the negative y direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 2.45 cm from its initial position. J (c) Determine the change in electric potential energy of the charged particle. J (d) Determine the speed of the charged particle....
(a) An alpha particle has a mass of 5.71×10−27 kg and bears a double elemen-tary positive...
(a) An alpha particle has a mass of 5.71×10−27 kg and bears a double elemen-tary positive charge. Such a particle is observed to move through a 2.7 T magnetic field along a circular path of radius 0.17 m. The charge on a proton is 1.60218×10−19 C. What speed does it have? Answer in units of m/s (b) what is its kinetic energy? answer is units of J (c) what potential difference in MV would be required to give it this...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT