Question

The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from...

The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from state a to state b. As shown in the diagram, Pa = Pb = 600 Pa, Va = 3.0 m3, and Vb = 9.0 m3. The pressure is then reduced to 200 Pa without changing the volume, as the gas is taken from state b to state c.

c. Determine Q for the process bc.

d. Determine the change in thermal energy of the gas for the two processes ab and bc together; that is, Eth,c - Eth,a.

Homework Answers

Answer #1


from a to b is isobaric process

change in internal energy Ub- Ua = n*Cv*dT


dU = n*Cv*dT

dU = (3/2)*n*R*(Pb*Vb - Pa*va)/nR

dU = (3/2)*(Pb*Vb - Pa*va)


dU = (3/2)*((600*9) -(600*3)) = 5400


Work = Pa*(Vb - va) = 600*(9-3) = 3600 J


from Ist law of thermodynamics

Q = dU + W = 9000 J   <<<<=========ANSWER

part (b)


Work = Pa*(Vb - va) = 600*(9-3) = 3600 J <<<<=========ANSWER

======================

part(c)

change in internal energy Ub- Ua = n*Cv*dT


dU = n*Cv*dT

dU = (3/2)*n*R*(Pc*Vc - Pb*vb)/nR

dU = (3/2)*(Pc*Vc - Pb*vb)


dU = (3/2)*((200*9) -(600*9)) = -5400


dU = -5400 J


work = 0


Q = dU = -5400 J   <<<<=========ANSWER

part(d) Uc - Ua = Uc - Ub + (Ub-Ua) = 0 <<<<=========ANSWER

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The PV diagram shows the compression of 60.1 moles of an ideal monoatomic gas from state...
The PV diagram shows the compression of 60.1 moles of an ideal monoatomic gas from state A to state B. Calculate Q, the heat added to the gas in the process A to B. Data: PA= 1.84E+5 N/m2 VA= 1.97E+0 m3 PB= 1.15E+5 N/m2 VB= 9.30E-1 m3
2 moles of a monatomic perfect gas (initial state A and final state C) undergo an...
2 moles of a monatomic perfect gas (initial state A and final state C) undergo an isobaric expansion AB followed by an adiabatic expansion BC. TA= 18 C PA= 2*10^5 Pa VB= 0,048m^3 Calculate TB and the amount of heat Q exchanged in the transformation from A to C.
2.00-mol of a monatomic ideal gas goes from State A to State D via the path...
2.00-mol of a monatomic ideal gas goes from State A to State D via the path A→B→C→D: State A PA=11.0atm, VA=13.00L State B PB=11.0atm, VB=6.50L State C PC=20.5atm, VC=6.50L State D PD=20.5atm, VD=22.00L Assume that the external pressure is constant during each step and equals the final pressure of the gas for that step. Calculate q for this process. Calculate w for this process.
A cylinder containing 3.0 moles of a monatomic, ideal gas begins at a pressure of   2.0...
A cylinder containing 3.0 moles of a monatomic, ideal gas begins at a pressure of   2.0 × 105 Pa, with a volume of 0.0365 m3. The gas then goes through the following three processes, which comprise a thermal cycle: The gas is expanded isothermally, to twice its original volume. The gas is cooled isobarically, back to its original volume. The gas is heated isochorically, up to its original pressure. (a) Find the initial temperature of the gas, in Kelvin. (b)...
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has...
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has a pressure of 2.61 × 105 Pa and a volume of 4.9 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. 1. The pressure of the gas is increased to 5.61 × 105 Pa while maintaining a constant volume. 2....
An ideal monatomic gas at Pa = 3x10^5 N/m^2, Va = 0.06m^3, and T = 27C...
An ideal monatomic gas at Pa = 3x10^5 N/m^2, Va = 0.06m^3, and T = 27C expands adiabatically tp Pb = 2x10^5 N/m^2 and Vb = 0.085m^3 and then isothermally to Vc = 0.1m^3. What are the final temperature, pressure, and work performed by the gas? Show these paths on a P-V diagram
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of...
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of gas with an initial pressure of 350 kPa and an initial volume of 1.4 m3 . Find the pressure of the gas after it expands adiabatically to a volume of 2.8 m3 . Pf= 110 kPa Find the temperature of the gas after it expands adiabatically to a volume of 2.8 m3 .
Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume...
Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume 2.10 m3. While undergoing an adiabatic expansion, the gas does 1180 J of work.​ What is the final pressure of the gas after the expansion?​ in kPa
We consider an isolated system made up of 2 moles of an ideal gas which can...
We consider an isolated system made up of 2 moles of an ideal gas which can pass reversibly from a state A (PA, VA, TA = 300 K) to a state B (PB = 3PA, VB = VA / 3, TB) by a transformation which comprises two stages: it is first isochoric (constant volume), then isobaric (constant pressure). 1-Determine the work involved. The ideal gas constant is R = 8.31 J / K.mol, and the internal energy of an ideal...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is tripled in an isobaric process. Then it undergoes an isothermal process to a pressure of 9.0 kPa. The volume is then cut in half in another isobaric process after being tripled. Finally, it returns to the original state in an isochoric process. (a) Draw a PV diagram of the cycle. Label each state (vertex) with a letter (A, B, …) and each transition with...