Question

A beam of electrons hits a pair of slits spaced a distance d apart (center-to-center). The...

A beam of electrons hits a pair of slits spaced a distance d apart (center-to-center). The wavelength of the electrons is 23.8 nm. After traveling through the slits, the electrons form an interference pattern on a screen located a distance 0.750 m from the slits. If the center of the second 'bright' fringe occurs 2.30 cm from the center of the central bright fringe on the screen, what is the separation, d, between the slits?

How fast are the electrons traveling?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A beam of electrons moving at a speed of 8.4×106 m/s passes through a double-slit. The...
A beam of electrons moving at a speed of 8.4×106 m/s passes through a double-slit. The wavelength of these electrons is 8.677×10-11 m. A phosphorescent screen is placed 1.7 m behind the slits so that each time an electron hits the screen the spot where the electron hits will glow. Since electrons have a wave nature, the pattern of glowing spots forms an interference pattern on the screen. You measure the separation between the central bright fringe and the m=6...
A pair of narrow and parallel slits is separated by a distance (d) of 0.750mm and...
A pair of narrow and parallel slits is separated by a distance (d) of 0.750mm and are illuminated by a green light with a wavelength of 562nm. The interference pattern is seen on a viewing screen that is L = 1.80 m away from the plane of the parallel slits. a) Find the distance from the center of the central maximum to the center of the first dark fringe b) calculate the distance from the center of the central maximum...
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by...
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by coherent light with wavelength 550 nm. The intensity at the center of the central maximum is 4.30 × 10-6 W/m2. What is the distance on the screen between the third bright fringe and the sixth dark fringe? What is the intensity at a point midway between the center of the central maximum and the first minimum?
Two slits are separated by 0.320 mm. A beam of 482.0 nm light strikes the slits,...
Two slits are separated by 0.320 mm. A beam of 482.0 nm light strikes the slits, producing an interference pattern on a screen. The screen is located 2.30 m from the slits. Find the distance from the first dark fringe on one side of the central maximum to the second dark fringe on the other side. Please write clearly and legibly!
A double-slit interference pattern is created by two narrow slits spaced 0.21 mm apart. The distance...
A double-slit interference pattern is created by two narrow slits spaced 0.21 mm apart. The distance between the first and the fifth minimum on a screen 61 cm behind the slits is 6.2 mm. a. Draw an intensity graph showing the interference pattern and identifying the central maximum, first minimum, fifth minimum, and the distance given in the problem declaration. b. What is the wavelength (in nm) of the light used in this experiment?
3. Red light with wavelength 680 nm passes through a pair of slits with a separation...
3. Red light with wavelength 680 nm passes through a pair of slits with a separation of 61 microns. 3a). Find the scattering angle corresponding to the first bright fringe. 3b). If the diffraction pattern is projected onto a screen a distance L = 11 meters away, what is the separation g on the screen between the unscattered beam and that first bright fringe?
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on...
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on a screen 2 m away from the slits. a. If the seventh bright fringe on the detector is 10 cm away from the central fringe, what is the wavelength of light (in nm) used in this experiment? b. What is the angle of the diffraction order?
A beam of electrons is accelerated from rest and then passes through a pair of identical...
A beam of electrons is accelerated from rest and then passes through a pair of identical thin slits that are 1.40 nm apart. You observe that the first double-slit interference dark fringe occurs at ±18.0 ? from the original direction of the beam when viewed on a distant screen. Through what potential difference were the electrons accelerated?
Light of wavelength 532 nm illuminates a pair of slits separated by a distance of d=...
Light of wavelength 532 nm illuminates a pair of slits separated by a distance of d= 0.42 mm. An interference pattern is observed on a screen placed a distance L away (L>>d). You may use the small angle approximation for this problem. What is the distance L if the width of the central bright spot of the interference pattern is delta(y) = 1.9 cm? The answer is supposed to be 15 m but i cant figure out how to get...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100 mm. The first dark fringe is formed on a screen at a vertical distance of 1.20 cm from the center of a screen placed in front of the slit. How far away is the screen placed What is the distance on the screen from the center of the interference pattern to the m = 3 bright fringe? What is the shortest distance from the...